R&D Status of the CEPC ScW ECAL

Mingyi Dong dongmy@ihep.ac.cn

State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, CAS

On behalf of the CEPC calorimeter working group

R&D Status of the CEPC ScW ECAL, CEPC workshop, Roma, 2018.5.25

Outline

- Introduction of CEPC scintillator-tungsten ECAL
- Scintillator module test and optimization
- Design and development of readout electronics
- Summary

Requirements of CEPC ECAL

Precise measurements of electrons and photons with energy resolution of :

 $\sigma_E/E\approx 16\%/\sqrt{E}\oplus 1\%$

 Jet energy resolution (ECAL combined with HCAL and tracker):

 $\sigma_E/E \approx (3\% - 4\%)$

• Can give detailed information of showers: high granularity

Particle Flow Algorithm (PFA) calorimetry system is considered

- High granularity
- Compact showers(small radiation length X₀, and small Moliere radius R_M)
- Minimum dead materials

Scintillator-tungsten ECAL

- A sampling calorimeter with scintillator-tungsten sandwich structure (ScW) is one of the ECAL options
- Sandwich structure
 - Absorber + scintillator module + readout electronics(PCB)
- Scintillator readout module
 - Scintillator + SiPM
- Absorber
 - Tungsten

Optimization of ScW ECAL

- Simulation and optimization of the structure and geometry to determine the key parameters
 - Total Thickness of the absorber: 80~90mm
 - Layer number: 25
 - Granularity: 5mm × 5mm
 - Thickness of the scintillator: 2mm

More details in Dr. Hang Zhao's talk

5

ECAL Optimization II

- Dynamic range of ECAL scintillator module
 - 1MIP ~800 MIPs
- ~15 p.e. @ 1 MIP
 - SiPM >10k pixels

Key parameters of scintillator module

The scintillator module : Scintillator + SiPM

Basic structural and functional block of the active layers of the ScW ECAL

- Granularity \rightarrow Number of the readout channels \rightarrow Cost
- Light output \rightarrow Scintillator, Reflector, PDE of SiPM
- Homogeneity → Scintillator, SiPM coupling mode, Reflector
- Dynamic range \rightarrow light output, Number of pixels of SiPM
- Dead material /area → Thickness of the reflector, SiPM coupling mode

Design of scintillator module

- Scintillator strip module is designed as strip wrapped with enhanced specular reflector (ESR)
- Scintillator dimension : 5mm×45mm×2mm
- Cross arrangement of neighboring layers \rightarrow a transverse readout cell size of 5×5 mm²
- Reduction of the readout channels \rightarrow low cost
- SiPM coupled at the side or the bottom of the scintillator strip \rightarrow few or negligible dead area

Light output and uniformity test

or 010P) coupled at the side of the scintillator

- Light output is non-uniformity along the length of the scintillator, degrades the energy resolution
- Need to be optimized

100

Energy [GeV]

0 50

150

Module optimization (reflective layer)

Strip with rough reflective surfaces

Strip wrapped with different reflective layer

- Rough reflective surfaces vs. polished surfaces
- Diffuse reflective layer vs. ESR
- Slightly improve the uniformity, but not good enough.

Scintillator module output simulation

- Simulation is performed to optimize the scintillator module
 - PhysicsList: QGSP_INCLXX + Standard Geant4 Optical Physics (Geant4 Version: Geant4.10.3)
 - Scintillator Strip: BC408, dimension: $45 \times 5 \times 2$ mm³
 - SiPM: $1 \times 1 \times 0.1$ mm3 , Pitch size 25µm, 1600 pixel
 - Cladding: ESR, Tyvek
 - Particle source: Sr-90, Center of the Strip, Vertical incidence

Stand alone Geant4 simulation. Parameters are still under optimization

Module optimization (SiPM coupling mode)

- SiPM (Hamamatsu S12571-010P)embedded at side-end of the strip or the bottom-end of the strip
- Uniformity of light output is not improved

Module optimization (SiPM coupling mode)

- SiPM embedded at bottom-center of the strip
- Uniformity of light output is improved significantly

SiPM bottom-center embedded coupling

SiPM bottom-center embedded coupling mode will be adopted in the construction of the ScW ECAL prototype

- Improve the uniformity \rightarrow The non-uniformity can reach about 10%
- No gap between the scintillators \rightarrow Avoid the dead area
- Easy to operation in the prototype construction
- Can use SiPM with larger dimension and more pixels to extend the dynamic range of the SiPM

SiPM dynamic range

• The SiPM is not a linear photon detection device. The effective response pixels can be described by following formula:

$$N_{fire} = N_{eff} (1 - e^{-\epsilon N_{in}/N_{eff}})$$

 $N_{\rm fire}$: number of fired pixels, $N_{\rm eff}$: number of effective pixels,

 \mathcal{E} : PDE, N_{in} : number of incident photons.

$N_{eff} > N_{real}$, thus extends the dynamic range of the SiPM

- SiPMs used in the preliminary test
 - Hamamatsu S12571-025P/025P
 - Hamamatsu S12571-025P/010P
 - $1mm \times 1mm$ sensitive area, $25\mu m/10\mu m$ pitch, 1600 /10k pixels
- SiPM with more pixels is needed, → larger sensitive area. SiPM bottom-center embedded coupling mode make it possible

SiPM linearity vs pulse width

- The width of LED light are: 5ns 400ns
- The SiPM output linearity is improved with the incident light width

Electronics Development

- Switched capacitor array store charge
- measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable Cf of pre-amplifer
 - Rload on the board
 - Shaping time and delay

Electronics test

Test Platform

- Calibration
- Cosmic-ray test with scintillator modules

Electronics cosmic-ray test

- Different scintillator materials were tested by cosmic rays
 - Plastic scintillator
 - BC408
 - EJ200
 - Crystal
 - BGO crystal
- SiPM
 - S12571-010P
 - 1mm×1mm
 - 10k pixels

Cosmic ray test results

The peak of the MIPs is clearly separated from the pedestal

The electronics worked with good performance

Compared with CALICE-EBU ECAL

Peak identified channels are only 12.5%. MIP peak identification with 10k pixel MPPC is not easy.

Preparation for single layer prototype

Scintillator strips are incised and wrapped in the SIC (Shanghai Institute of Ceramics)

- Single layer prototype for the study of module layout, integration, preliminary performance
- Includes 144 scintillator modules (5mm×45mm×2mm) with S12571-010P SiPMs
- Half are side-end coupling mode, another half are bottom-center embedded coupling mode

Summary and Plan

- Optimization of ECAL: thickness of the absorber, layers, cell size, scintillator thickness etc.
- Scintillator strip module test and optimization
- Design and development of readout electronics
- Preparing the first layer of the Scintillator tungsten ECAL prototype

Thanks for your attention !