

PFA Oriented ECAL Simulation and Optimization for the CEPC

Hang Zhao

On behalf of CEPC Calorimeter and Simulation Study Group Institute of High Energy Physics, CAS State Key Laboratory of Particle Detection and Electronics, China

Workshop on the CEPC, Rome, May 25 2018

Outline

- Tools:
 - Simulation: Software chain & Geometries
- Optimization of ECAL Geometry
 - Cell Size & Photon Shower Separation
 - Longitudinal Structures & EM Energy Measurements
- Summary

CEPC Full Simulation Software

CEPC Detector Model

CEPC_V1: baseline in CEPC preCDR
CEPC_V4: baseline for CEPC CDR (APODIS)

	CEPC_v1 (~ ILD)	APODIS (Optimized)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

CEPC_V1 vs CEPC_V4

CEPC Simplified Geometry

- calorimeter only
- ideal geometry(Cylindrical barrel layer).

Advantages:

- easily modified
- no geometry defects
- totally homogeneous

/Mokka/init/globalModelParameter world_box_hx 100000
/Mokka/init/globalModelParameter world_box_hy 100000
/Mokka/init/globalModelParameter world_box_hz 250000
/Mokka/init/globalModelParameter SiCalLayerStructure (W:3,Si:0.25,PCB:2)*30
/Mokka/init/globalModelParameter SiCalZeroThickReset 0

/Mokka/init/globalModelParameter SiCalInnerRadius 1845 /Mokka/init/globalModelParameter SiCalBarrelHalfZ 2245 /Mokka/init/globalModelParameter SiCalEndcapEta1 10000 /Mokka/init/globalModelParameter SiCalBuildBarrel 1 /Mokka/init/globalModelParameter SiCalEndcapOuterR 2500 /Mokka/init/globalModelParameter SiCalXCellSize 5 /Mokka/init/globalModelParameter SiCalYCellSize 5

PFA ECAL Study

Shower separation

 Energy measurement, especially for photon energy

DRUID, RunNum = 0, EventNum = 23

2

ECAL geometry optimization

- Transverse:
 - Cell Size

photon shower separation, with physics benchmark of Br(tau->X)

- Longitudinal
 - Total Absorber Thickness
 - Number of Layers & Sensor Thickness

photon energy resolution

CEPC PFA ECAL Options

Differences for ScECAL geometry optimization:

- Scintillator sensor (~2 mm) is thicker than Silicon (~0.5 mm)
 - Total thickness (2mm*30 > 0.5mm*30). Previous talk shows the simulation results on longitudinal structure.
 - Moliere radius (~24 mm > ~19mm) -> Negligible Impact for small cell size.

The results are based on the SiECAL, similar results have been achieved with ScECAL

Nearby EM-Shower Separation

Lots of nearby EM-showers exist in jets, the separation and reconstruction of them are important for some physics objecsts.

The reconstruction efficiency of two parallel 5 GeV photons was studied. The distance between these two photons ranges from 1mm to 80mm.

failed

 $(E_{blue cluster} \approx 1/6E_{orange cluster})$

failed

succeeded

Nearby EM-Shower Separation

Efficiency with differrent cell size was checked

At large distance, the reconstruction efficiency converges to 1 At very closed by distance, the reconstruction efficiency drops significantly

The critical separation distance is defined as the distance with which the successful reconstruction efficiency is 50%.

Nearby Photon Showers in Physics Objects

Table 2. Percentages of photons that would be polluted by neighbor particles

Cell Size	Critical Separation Distance with Arbor	Percentage of $Z \rightarrow \tau^+ \tau^-$
1 mm	4 mm	0.07%
5 mm	8 mm	0.30%
10 mm	16 mm	1.70%
20 mm	38 mm	19.6%

At least ~10mm × 10mm effective cell size 12

Study on ECAL Absorber Thickness

175GeV photon shower energy deposit in each 1mmW ($0.35X_0$)

	95mm W	90mm W	85mm W	80mm W
175GeV	99.0%	98.6%	97.9%	96.9%
120GeV	99.2%	98.8%	98.2%	97.3%
45GeV	99.4%	99.1%	98.7%	98.1%

vvHiggs->diphoton Reconstruction

the reconstruction accuracy is mainly decided by the photon energy resolution because the spatial resolution is negelectable.

2.8mmW+0.5mmSi in each layer

resolution(σ /mean) with different total tungsten thickness

Photon energy resolution at different ECAL layer number

0.5mm thick silicon in each layer

less layer gets worth photon energy resolution, due to the less sensor/absorber ratio

thicker sensor can compensate photon energy resolution

30layers 0.5mm silicon 25layers 1mm silicon 20layers 1.5mm silicon

CEPC Detector Model Results vvHiggs->gluon gluon

Table 1. Resolution of reconstructed Higgs boson mass through vvHiggs, $Higgs \rightarrow gluons$ events using different longitudinal structures at CEPC_v1 geometry.

Layer number	Silicon sensor thickness	Higgs boson mass resolution (Statistic error only)
30	0.5 mm	3.74 ± 0.02 %
25	1 mm	3.71 ± 0.02 %
20	1.5 mm	3.78 ± 0.02 %

CEPC Detector Model Results vvHiggs->gluon gluon

Cell Size (mm ²)	5×5	10×10	20×20
BMR	3.74 ± 0.02 %	3.75 ± 0.02 %	3.93 ± 0.02 %

Summary on ECAL Geometry Optimization

- ~10mm*10mm or smaller cell size is needed for EM shower seperation in tau jets.
- Total Tungsten thickness should be 80-90mm.
- <30 layers is feasible, if thicker sensor can be used to conpensate photon energy resolution loss.
- Paper: Particle Flow Oriented Electromagnetic Calorimeter Optimization for the Circular Electron Positron Collider, JINST, March 2018

Thanks for your attention!!

Back Up

Finding Efficiency on Photon Reconstruction by ArborPFA

Good performance on photon shower energy collection and energy measurement !!

Photon Spatial Resolution

ECAL R-Z

Percentage of Polute [%]

Phton energy resolution with different absorber thickness

23

Digitization for ScW ECAL

- Nonhomogeneity
- Saturation
- etc..

vvHiggs->γγ Events 5mm*45mm*2mm plastic scintillator cell

