The R&D progress of CEPC HCAL

Yu Boxiang On behalf of the CEPC Calorimeter working Group

State Key Laboratory of Particle Detection and Electronics, China Institute of High Energy Physics, CAS

CEPC Workshop, 25 May 2018, Rome

Outline

- -Requirements of CEPC Calorimeter
- —The options of CEPC-HCAL;
- —The progress of two option of HCAL
 - DHCAL based on RPC and MPGD(THGEM/GEM);
 - AHCAL based on scintillator;
- —Summary

Requirements of CEPC Calorimeter

- Jet energy resolution (HCAL combined with ECAL and tracker): $\sigma_E/E \approx (3\% - 4\%)$ @100GeV
- High granularity, Compact showers(small radiation length X₀, and small Moliere radius R_M), Minimum dead materials

The options of CEPC-HCAL;

Two options:

- 1. Digital HCAL (DHCAL): Gas detector, RPC & MPGD(THGEM/GEM)
- 2. Analog HCAI (AHCAL): Plastic scintillator

CEPC high granularly calorimeter study

-Hardware

- CEPC-ECAL (Mingyi's talk)
 - ➤ 3 Institutions: USTC+IHEP+LLR
- CEPC-HCAL
 - ➤ 4 Institutions: USTC+IHEP+SJTU+IPNL
- —Simulation & Optimization(Bing's talk and Hang's talk)
 - PFA
 - ➤ 3 Institutions: IHEP+LLR+IPNL
 - Geometry optimization
 - 2 Institutions: IHEP+SJTU

SDHCAL Based on RPC (IPNL+SJTU within CALICE)

SDHCAL Prototype

- Total Size:1.0x1.0x1.4m³
- Total Layers: 48
- Total Channel(pads):440000
- Power consumption: $10 \mu W/channel$

(Power pulsing)

the first technological prototype among a family of prototypes of high-granularity calorimeters

Developed by the CALICE collaboration

Structure of sampling layer

(0. $12\lambda_I$, 1. $14X_0$) Stainless steel Absorber(15mm) Stainless steel wall(2.5mm) $GRPC(6mm \approx 0 \lambda_I, X_0)$ Stainless steel wall(2.5mm) PCB(1.2mm) Supporting Readout Anode structure **Resistive plate** pads (2.5mm)(glass)(0.7mm) Gas gap(1.2mm) Mylar layer

Cathode Resistive plate Ceramic ball spacer TFE(93%), CO₂(5%), (glass)(1.1mm) SF₆ (2%)

ASIC HARDROC(64 channel) three-threshold (Semi-digital) 110fC,5pC,15pC

Analysis of test beam data: Particle identification using BDT in SDHCAL

BDT 6 var Input:

- First layer of the shower(Begin) 1.
- 2. Number of tracks in the shower (TrackMultiplicity)
- 3. Ratio of shower layers over total fired layers(NInteractinglayer/Nlayers)
- Shower density(Density) 4.
- Shower radius(Radius) 5.
- Maximum shower position(Length) 6.

0.2

Shower layers / fired layers

Shower Length

8

Number of tracks

Begin

Analysis of test beam data: Energy reconstruction using MLP and BDT

Optimization of SDHCAL Layers

(0. $12\lambda_I$, 1. $14X_0$)

➔ SDHCAL has 48 layers which aims for ILC Detector

- 6mm RPC+20mm absorber
- Optimization no. of layers for CEPC at 240GeV

→40-layer SDHCAL yields decent energy resolution.

DHCAL based on GEM

Typical parametersCu : $t = 5\mu m$ Kapton: $T = 50\mu m$ Diameter: $d = 60\mu m$ D = $80\mu m$ pitch: $140\mu m$

> Advantages:

1. assembling process is easy and fast

- 2. no dead area inside the active area
- 3. uniform gas flow
- 4. detachable

Self-stretching technique (from CERN)

Readout Scheme

• Schematic of the System

 \square Readout Board: GEM detector Readout composed by 900 $1cm^2$ pads.

- MICROROC Test Board: Mounted 4 Microroc ASICs, controlled by daisy chain.
- □ DIF Board: Microroc control, test and data acquisition

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	$1 \text{mW/ch}, 10 \mu \text{W/ch}(\text{ILC})$
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	$1.42 \text{mW/ch}, 10 \mu \text{W/ch}(\text{ILC})$
MICROROC	64	1fC~500fC	Multiple	335µW/ch, 10µW/ch (ILC)

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

□ Thickness: 1.4mm

- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable charge:2fC

Structure and gain of GEM detector

Division of the 30cmX30cm double GEM detector

Structure of GEM detector

Initial voltage of GEM foil: $\triangle V1: 285 V; \triangle V2: 295 V$

- Edrift: 1.45 kV/cm;
- Etrans: 2.95 kV/cm ;
- Eind: 3 kV/cm

Gain of the detector in 95% Ar-5% iC4H10 mixture

Gain vs Voltage

Detection efficiency for MIPs

Electronic system

Detection efficiency vary with voltage

Spectra of X ray and cosmic ray

cosmic ray efficiency test

Detection efficiency in different area of GEM detector

Detection efficiency and multiplicity test_1

Coincident

Electronic system based on Microroc chip

Board

Photograph of the test system

Test Board

Discriminator

GEM

PMT2

Initial voltage of GEM foil: $\triangle V1: 285 V; \ \triangle V2: 295 V$

- Edrift: 1.45 kV/cm;
- Etrans: 2.95 kV/cm ;
- Eind: 3 kV/cm

Detection efficiency and multiplicity vary with high voltage

Detection efficiency and multiplicity test_2

- Edrift: 1.45 kV/cm;
- Etrans: 2.95 kV/cm ;
- Eind: 3 kV/cm
- △V1:300 V
- △V2: 310 V

Detection efficiency and multiplicity vary with thresholds

Division of the GEM detector

Detection efficiency and multiplicity in different area of GEM detector

Preliminary study on THGEM-DHCAL

- three structure can be selected;
 - THGEM;
 - WELL-THGEM;
- WELL-THGEM is the-best selection.
 - thinner, high gain, lower discharge

The thickness of WELL-THGEM<6mm

Gain result of 20cmX20cm THGEM

- More analysis of RPC-DHCAL will be done;
- Based on study status, THGEM&GEM will be merged to THGEM detector
- Integrate ASIC readout with THGEM Detector;
- Design and Test $50 \text{cm} \times 100 \text{cm}$ THGEM detector in 6mm.

The R&D progress of scintillator AHCAL

— Analog hadron calorimeter for CEPC:

- The absorber: 2cm Stainless steel;
- Detector cell size: $3 \text{ cm} \times 3 \text{ cm}$ (baseline),

```
4cm\times 4cm, 5cm\times 5cm;
```

- Readout chip: ASIC SPIROC2E
- The sensitive detector : Scintillator(organic RMS scintillator);
- 40 sensitive layers, total readout channel. \approx 6 Million (3cm × 3cm)

AHCAL prototype Plan

Get about 10M RMB funds

Specification:

- 35 active layers;
- Detector cell:17*17*35=10115;
- Absorber: stainless steel;
- ASIC Chip: SPIROC-2E;
- Prototype size:51*51*87.5cm³

Injection moulded Scintillator tiles

- 4000 tiles polystyrene, POPOP
 - injection moulded at Beijing
 - incl. dimple, no further surface treatment;
- Mechanical tolerances OK for assembly, the size error less than 50um;
- One batch scintillators Light yield is not very uniform, but the problem has been found, caused by material mixer, new batch scintillator under production;

Tiles size(mm)	30.08x30.01	30.07x30.04	30.04x30.02	30.09x30.09	30.05x30.03
	x3.08	x3.09	x3.09	x3.09	x3.09
Light yield(p.e.)	23.5	22.78	22.86	25.02	23.54

Detector Cells study

- Via mechanical drilling and polishing, detector cell was made
- The four sizes of $30 \times 30 \times 3$ mm³, $30 \times 30 \times 2$ mm³, $40 \times 40 \times 3$ mm³and $50 \times 50 \times 3$ mm³ were made.
- SiPM or MPPC(surface-mounted)
- Scintillator(BC408) were wrapped by ESR foil

Readout electronics

- Electronic readout board is Hamamatsu C12332-01
- Temperature compensation keep amplitude of the SiPM stable

S12571-025P parameter : Sensitive area :1 \times 1mm² Pixel size :25 \times 25µm² Pixel number:1600 Gain: 5.15E+05 S13360-1325PE parameter : Sensitive area : $1.3 \times 1.3 \text{ mm}^2$ Pixel size : $25 \times 25 \mu \text{m}^2$ Pixel number:2668 Gain: 1.1E+06

Uniformity measurement

- Uniformity scans (MPPC: S12571-025P and)
- Scintillator tile under study can be moved in a step size of 5×5 mm²
- 30x30x3mm³, 30x30x2mm³and 50x50x3mm³ were measured .
- The mean response can reach 100%,94% within 10% deviation from the mean value, respectively.

Cosmic-rays measurement results

Table 1 Cosmic-ray measurement results of detector cells with different sizes+						
No.«	Detector Cell.	MPPC Type	Reflective Foil Type	Mean Np.e.+?	Polishing Methods ^₀	
1₽	$30 \times 30 \times 3 mm^{3}$	S12571-025₽₽	ESR.	31.39±0.65¢	Ultra Precise Polishing	
247	$30 \times 30 \times 3 mm^{3} r$	S12571-025₽₽	ESR. ⁴²	22.55±0.7₽	Precise Polishing₽	
3₽	$30 \times 30 \times 3 mm^{3} r$	S12571-025₽₽	ESR.	18.92±0.39¢	Rough Polishing ₄ ,	
4₽	30×30×3mm ³ + ³	S12571-025₽₽	TYVEK₽	13.63±0.33¢	Precise Polishing₽	
5₽	40×40×3mm ³ + ³	S12571-025₽₽	ESR↔	14.89±0.73¢	Precise Polishing.	
6₊⊃	50×50×3mm ³ ₄ ,	S12571-025₽₽	ESR↔	9.87±0.43₽	Precise Polishing₽	
7₽	30×30×2mm ³ + ³	S13360-1325PE+	ESR↔	33.89±0.49¢	Precise Polishing₽	

- For same size of detector cell, polishing method is very important;
- Different reflective foil: ESR is better than TYVEK;
- The bigger size detector cell, the less p.e. detected;

- About 100 detector cells one batch;
- Electronics under design;
- Mechanical structure under design;

- Chinese Beijing Normal University (BNU) has developed silicon photomultiplier (SiPM) technologies with epitaxial quenching resistors (EQR).
- NDL EQR-SiPM is easy to implement owning to its unique structure featuring intrinsic continuous and uniform cap resistor layer, thus reducing the cost of AHCAL.

NDL-SiPM Test result (1mmx1mm 10umSiPM new type)

Six NDL-SiPMs was tested: 30mmx30mmx3mm with PL Scintillator

SiPM1	SiPM2	SiPM3	SiPM4	SiPM5	SiPM6
25.43p.e.	25.77p.e.	25.12p.e.	24.06p.e.	23.44p.e.	24.61p.e.

The light yield deviation smaller than 2p.e.

All SiPMs' high Voltage are 35V, each of which is measured after calibration.

Hist_QDC				ION
Entries 300000 Mean 14.65 RMS 3.986	Parameter	Value	Parameter	Value
	Effective Active Area	$1 \times 1 \text{mm}^2$	Peak PDE@420nm*	39%
	Effective Pitch	10 µm	Dark Count Rate*	~500 kHz
	Micro-cell Number	~10000	1 p.e. Pulse Width	5 ns
	Operating Temperature	-196°C - +40°C	Temperature Coefficient For V_b	25 mV/C
	Breakdown Voltage (Vb)	25.5±0.2 V	Gain	≥2×10 ⁵
0 10 20 30 40 50 60 70 80 90 100	Max. Overvoltage (ΔV_{max})	8 V	Single Photon Time Resolution	≤ 70 ps

Crosstalk spectrum

CEPC-AHCAL Next

- ASCI chip readout study;
- Injection moulded plastic scintillator production;
- Test the Chinese NDL-SiPM;
- Detector cell test system construction;
- Simulation and optimization AHCAL

Summary and next

The construction of CEPC-HCAL prototype based on scintillator will be started;

—Some critical R&D items identified, which will be followed up.

—Our R&D work would surely be more and more integrated into international PFA calorimeter R&D activities.

Thanks for your attention!

Backup!

NDL EQR-SiPM VS Hamamatsu MPPC

	NDL	SiPM	Hamamatsu MPPC		
Effective Active	11-3030 B-S	22-1414 B-S	S13360-3025PE	S13360-1325PE	
Area	3.0×3.0 mm ²	1.4×1.4 mm² (2×2 Array)	3.0×3.0 mm ²	1.3×1.3 mm ²	
Effective Pitch	10 μm	1 0 μm	25 μm	25µm	
Micro-cell Number	90000	19600	14400	2668	
Fill Factor	40%	40%	47%	47%	
Breakdown Voltage (V _b)	23.7±0.1V	23.7±0.1V	53±5V	$53\pm5V$	
Measurement Overvoltage (V)	3.3	3.3	5	5	
Peak PDE	27%@420nm	35%@420nm	25%@450nm	25%@450nm	
Max. Dark Count (kcps)	< 7000	<1500	1200	210	
Gain	2×10 ⁵	2×10 ⁵	7.0×10 ⁵	7.0×10 ⁵	
Temp. Coef. For V _b	17mV/°C	17mV/°C	54mV/°C	54mV/°C	