CepC Tracker Summary

UNIVERSITY OF

D. Bortoletto University of Oxford

CepC Physics

Precision Z, W, and Higgs measurements

Dark sector search with Z rare decays

Detector Conceptual Designs (CDR)

Tracking detectors:

- Vertex identification
- Momentum measurements
- Particle ID

Low magnetic field concept (2 Tesla)

UNIVERSITY OF

Vertex Detector

- Identification of heavy quarks (b/c) is essential to e⁺e⁻ collider physics program
- H \rightarrow bb, cc requires a=5 μ m (intrinsic resolution), b=10 μ m (multiple scattering)

$$\sigma(r\phi) = a \oplus \frac{b}{p(\text{GeV}) \sin^{3/2} \theta} \ \mu \text{m}$$

- Space point resolution near IP $3\mu m$
- Material budget <0.15% X₀/layer
- Low Detector occupancy < 0.5%
- Radiation tolerance >1MRad/year and 10¹³ 1Mev/n_{eq}/y

CMOS Sensors

Monolithic sensors

Tower Jazz CIS 180 nm

- Used in ALICE upgrade
- Modified process considered for ATLAS Pixel ITk

First submission JADEPIX1

 Join MPW with IPHC in 2015 to understand charge collection performance with different geometries and epitaxial layer properties

Testing system developed at IHEP

JNIVERSITY OF

OXFORD

JADEPIX1 studies

Neutron irradiation at Xi'an pulse reactor to 10^{12} , $5x10^{12}$, 10^{13}

Beam test at DESY august 27, September 2, 2018

• ⁹⁰Sr

JadePix2 in CMOS technology

Yang Zhou

Layout of a single pixel in JadePix2

Testing two different amplifiers

Version 1: differential amplifier + latch

Diode 4 μ m²

Version 2: two stage CS amplifiers + latch

Testing ongoing

Yang Zhou

NVERSITY OF SXFORD SOI

SOI: LAPIS 200 nm process

- Fully depleted sensor
- Full in-pixel CMOS
- 5 Metal layers
- High resistive substrate($\geq 1 \ k\Omega$ •cm)
- Could be back thinned down to 75 μm
- Thicker sensitive layer: simplify the electronic design
 - 2-3 times signal charges for Minimum Ionizing Particles (MIP) even after the sensor back thinning down to ≈ 50µm
 - More compact layout: shrink the pixel size

T

⁵⁵Fe signal Efficiency versus bias voltage

IDEA Drift Chamber and Tracking system

- IDEA Drift Chamber
 - Novel approach at construction technique of high granularity and high transparency Drift (very low material)
 - Chambers (From KLOE DCH to IDEA DCH)
- IDEA tracking system (DCH+SVX+PSHW)

High granularity and high transparency Drift Chambers

- Material reduction to $\approx 10^{-3} X_0$ for the inner cylinder and to a few x $10^{-2} X_0$ for the end-plates, including HV supply and signal cables
- Feed-through-less wiring: allows to increase chamber granularity and field/sense wire ratio to reduce multiple scattering and total tension on end plates due to thinner wires
- Cluster timing: allows to reach spatial resolution <
 100 µm for 8 mm drift cells in He based gas mixtures
- Cluster counting: allows to reach dN_{cl}/dx resolution < 3% for particle identification (a factor 2 better than dE/dx as measured in a beam test)

IDEA

	Base Line	Option 1	Option 2	
	value	value	value	dim.
R _{in}	345	200*	250	mm
R _{out}	2000	2150	2000	mm
active area length	4000	4000	4000	mm
total length	4500	4500	4500	mm
total cells	56448	34560	52704	n.
layers	112	96	112	n.
Superlayers	14	12	14	n.
Layers per Superlay.	8	8	8	n.
phi sector	12	12	12	n.
smaller cell	11.85	14.2	11.65	mm
larger cell	14.7	22.5	15.25	mm
min. stereo angle	48	25	35	mrad
max. stereo angle	250	240	245	mrad

4th-Concept at ILC ZH $\rightarrow \mu + \mu - + X$

CepC full silicon option

- Two designs for full silicon tracker
- CEPCSID: replacing TPC with extra silicon strip barrel ladders and endcap disks
- SIDB: expanding the SID design to full tracking volume <u>http://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sidcc</u>
- B field is assumed to 3.0 T
- The radius of tracking volume is set as 1.87 m, not change the size of calorimeter
- Three options for barrel ladders
 - Detached two layers with overlap
 - Detached two layers without overlap
 - Conjunct layer with two silicon layers

 Two options for endcap petals

> Detached two layers

 Conjunct layer with two silicon layers

CepC full silicon option

- Many reconstruction tools available
- Tracking and fit
 - SiliconTracking_MarlinTrk
 - Conformal Tracking

• TPC detector concept:

- Motivated by the H tagging and Z
- ~3 Tesla magnetic field
- ~100 μ m position resolution in r ϕ
- Large number of 3D points(~220)
- dE/dx resolution: <5%</p>
- Tracker efficiency: >97% for p_T >1GeV
- 2-hit resolution in $r\phi$: ~2mm
- Momentum resolution: ~10⁻⁴/GeV/c

Huirong Qi

Distortion of the drift field due to secondary ions produced in the amplification region (Ion Back Flow)

CepC TPC

Warning due to ALICE expeirnce that this results could be misleading if measured with x-ray flux

- Continuous IBF module:
 - Gating device may be used for Higgs run
 - Open and close time of gating device for ions:
 - ∼ µs-ms
 - No Gating device option for Z-pole run
 - Continuous Ion Back Flow due to the continuous beam structure
 - Low discharge and spark possibility

- Laser calibration system:
 - Laser calibration system for Z-pole run
 - Calibration of the distortion using Nd:YAG laser device@266nm

Low Power 65 nm TPC readout

Low power design is critical for the 1M channel TPC

- Three prototype chips have been designed for the first MPW run
 - Analog Front-end (Charge Sensitive Amplifier
 - + CR-RC shaper) ASIC
 - Lower power SAR-ADC ASIC
 - Analog Front-end +SAR-ADC ASIC

 The Power consumption : 2.18mW/ch (spec 2.5 mW/ch)

Liu Wei

MUON DETECTORS

Paolo Giacomelli, Marco Poli Lener (, Liang Li (RPC)

- Eight layers of RPC stations.
- Other options:
 - Monitored Drift Tubes
 - Thin Gap Chamber
 - Micromegas
 - GEM

μ-RWELL

- Low cost, easy construction
- Position resolution: 10-200 μ m
- Time resolution: ~ 5-8 ns

Technology transfer ELTOS SpA (http://www.eltos.it)

MUON DETECTORS - IDEA

2T B field

CepC and FCC ee

- IDEA detector
- 3-4 MPGD stations interleaved in the iron return yoke.
- The current baseline solution employs μ-RWELL as active detector

ALICE

- 7 layers (inner/middle/outer): 3/2/2from R = 22 mm to R = 400 mm
- Ultra-lightweight support structure and cooling (0.30 % X₀ for innermost layers)
- Possible to remove and re-install the detector for maintenance during the yearly shutdowns

CMOS Monolithic Active Pixel Sensors in TowerJazz 180 nm technology

- Pixel pitch: 29 × 27 μ m²
- Low power consumption ~40 mW/cm²
- Input capacitance $C_{in} = 5 \text{ fF}$
- Input charge $Q_{in}(MIP) = 1300 e \rightarrow V = 40 mV$
- Spatial resolution 5 μ m, Event time resolution < 1 μ s
- Radiation hardness: expected in Run 3 and 4 < 300 krad (< 2.0 \times 10¹² 1 MeV n_{eq}/cm^2)

UNIVERSITY OF

Werner Riegler

Novel CMOS Pixel Sensors for the ALICE Upgrade

Vertical full depletion

Lateral partial depletion

Collection time < 30ns (V_{bb}=-3V)

Suitable for up to 10¹⁴ n/cm²

ALICE

In the framework of the R&D for the ALICE upgrade, CERN has developed in collaboration with Tower Semiconductor a process modification that allows full depletion of the high resistivity silicon layer

- Reduces charge collection time (<1ns)
- Enhances radiation hardness (~10¹⁵ n / cm²)

NALCO POOL POOL UNITEL OFFICE POOL OFFICE POOL OFFICE OFFICE POOL OFFICE OFFICE OFFICE POOL OFFICE OFFICE OFFICE POOL OFFICE OFFICE OFFICE OFFICE

Foundry Standard Process

The process modification requires a single additional process mask with no changes on the sensor and circuit layout

Epi-layer fully depleted Collection time < 1ns Operational for up to 10¹⁵ n/cm²

Modified process CERN/Tower

The ALICE test vehicle chip (investigator) and prototype ALPIDE chips exist with both flavors modification and experimental results see: NIM, A 871C (2017) pp. 90-96

Exploit flexibility of ultra thin

silicon

- Stitching to build larger sensors (RAL)
- Migration to 65 nm

D. Bortoletto CepC

ALICE TPC

- Diameter: 5 m, length: 5 m
- Gas: Ne-CO₂-N₂, Ar-CO₂
- Max. drift time: ~100 μs
- 18 sectors on each side
- Inner and outer read out chambers: IROC, OROC
- Current detector (Run 1, Run 2):
 - 72 MWPCs
 - ~550 000 readout pads
 - Wire gating grid (GG) to minimize Ion Back-Flow (IBF)
 - Rate limitation: few kHz

ALICE TPC Upgrade

Production of 40 IROCs and 40 OROCs until September 2018

TPC Upgrade requirements:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1% (ε = 20)
- Energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions
- Unprecedented challenges in terms of loads and performance

Solution: 4-GEM stack Combination of standard (S) and large pitch (LP) GEM foils Highly optimized HV configuration Result of intensive R&D

D. Bortoletto CepC

Development of CFRP Structures

Tim Jones

- Most low-mass support structures in PP experiments are made from CFRP.
 - High modulus carbon fibres embedded in a resin matrix
 - Cured under heat (120°C) and pressure (1-7 bar)
 - Laminate built up from several laminae at different angles
- Primary issue
 - CFRP laminates cured at elevated temperature need to be balanced to avoid distortions
 - Balanced: [0], [0/0], [0/90/0], [0/90/90/0], etc...
 - Increased thickness over mono-layer (eg. Kapton
- In Spread-tow pre-preg, the fibre bundles are spread out into strips (typically >15mm wide)
 - Lower areal weight and higher fibre fraction
 - Lower mass for equivalent stiffness
- Developed techniques to manufacture custom spread-tow
 woven pre-preg with weave ~ 5mm for vertex detector support

Technology R&D for CLIC & FCC-ee

Emilia Leogrande

Sensor + readout technology	Currently considered for
Bump-bonded Hybrid planar sensors	Vertex
Capacitively coupled HV-CMOS sensors	Vertex
Monolithic HV-CMOS sensors	Tracker
Monolithic HR-CMOS sensor	Tracker
Monolithic SOI sensors	Vertex, Tracker

UNIVERSITY OF

Integrated HR-CMOS sensors

UNIVERSITY OF

- Integrated CMOS sensor on High-Resistivity substrate
- Tests with INVESTIGATOR analog prototype chip in TowerJazz 180 nm
- HR-CMOS process (ALICE development): 20x20 50x50 µm2 pitch for 28x28 µm2, with external readout:
- ~99.3% efficiency, <5 ns timing, σSP ~ 4 μm
- Ongoing work to design fully integrated CLICTD chip: 30x300 µm² pitch, be thinned to 50-100 µm
- Plan to use smaller feature size processes in the future

Conclusions

• All road lead to Rome

Detector R&D for CepC can benefit from experience gained in the ILC/CLIC/FCC-ee R&D/studies and current experiments/ongoing upgrades (ALICE, LHCb, ATLAS....)

CLICDdet

- Built in stages: 380 GeV, 1.5 TeV, 3 TeV
- Beam structure
 - record data during collision time,
 - triggerless readout between bunch trains
 - power pulsing: detector "switched off"
 - between bunch trains
 - crossing angle (20mrad @3TeV) in crab crossing schem

CLICdet

- Tracking system
 - Vertex
 - Tracker
- Calorimeters
 - ECal
 - HCal
- Superconducting solenoid 4T
- Return yoke + muon ID system

The vertex detector

UNIVERSITY OF

- 3 double layers in the barrel
 - radius from 31** to 58 mm
 **limited by occupancy from pairs
- 3 double-layered forward disks
 - shaped in spirals to allow for air cooling (power-pulsed detector)
 - 50 mW/cm² achievable with power pulsing

1:1 scale air cooling thermal test setup

https://cds.cern.ch/record/2138963?In=it

- low material budget
 - 50 µm-thick sensors
 - 0.4% X₀ per double layer (0.2% X₀ per layer)
- total sensitive area = 0.84 m²

MUON Detectors ILC

- 14 layers in the barrel and 12 in the endcaps interleaved in the iron return yoke. The technology adopted is scintillator bars (2.5-3 cm wide, 7-10 mm thick) with wavelength shifting fibres and SiPM. Space resolution O(1 cm).
- RPCs (1x1 cm² pads) are considered as a possible option.