

The CMS High-Granularity Calorimeter (HGCAL) upgrade project for HL-LHC

CEPC Workshop, Rome, 23-25 May, David Barney (CERN)

Motivation for upgrading CMS endcap calorimeters for HL-LHC

2

Luminosity provided by HL-LHC opens new doorways to physics

HL-LHC: levelled $\mathcal{L} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ and pileup 140, with potential for 50% higher \mathcal{L} & pileup

Physics reach will include SM & Higgs, with searches for BSM including reactions

- initiated by Vector Boson Fusion (VBF) and including highly-boosted objects
- \rightarrow Narrow (τ) jets or merged (hadronic decays of W, Z) jets
- → Ideally want to trigger on these narrow VBF & merged jets

Good jet identification and measurement: crucial for HL-LHC

Existing CMS endcap calorimeters cannot cope with the expected radiation or pileup @ HL-LHC

CERN EP Seminar, April 2018

CMS will replace its endcap calorimeters for HL-LHC: the High Granularity Calorimeter

Replacement calorimeter must be radiation tolerant and able to deal with the expected pileup

At the same time, benefit from recent advances in technology to improve overall detector performance

One of the biggest challenges: improve jet energy resolution

Two main approaches for improving jet energy resolution

Substantial improvement of the energy resolution of hadronic calorimeters for single hadrons:

- dual (or triple) readout, e.g. DREAM
 - Cerenkov light for relativistic (EM) component
 - Scintillation light for non-relativistic (hadronic)

 Precise reconstruction of each particle within the jet
→ reduction of HCAL resolution impact:
particle flow algorithms and imaging calorimeters
e.g. CALICE detectors for linear colliders (CLIC, ILC), CMS HGCAL

Both techniques aim at separating charged/neutral & electromagnetic/hadronic components

Particle flow technique: make best use of all detectors to measure jet energies

Idea: for each individual particle in a jet, use detector with best energy/momentum resolution Charged tracks = Tracker e/photons = ECAL Neutral hadrons (only 10%) = HCAL

Particle flow already used in Aleph, Delphi & CMS (all had/have relatively low resolution HCALs)

Measurement of jets in **CMS** is **enhanced greatly** by the use of particle flow techniques

For best results: high granularity in 3D – separation of individual particle showers

For a Particle-Flow Calorimeter:

- **Granularity** is more important than energy resolution
- Lateral granularity should be **below Molière radius** in ECAL and HCAL
- In particular in the ECAL: small Molière radius to provide **good two-shower separation** (particularly in high pileup environment)

 \rightarrow dense absorbers and thin sensors

• Sophisticated software needed!

10

The CMS HGCAL design & prototyping

Overall design of HGCAL driven by need for radiation-hard segmented sensors

To realise a high-granularity calorimeter, we need:

low cost/area active material(s), radiation-tolerant on-detector electronics, highbandwidth data transmission, powerful FPGAs for off-detector electronics

Look for proven and adequately radiation-hard active materials To build a dense e.m./hadronic calorimeter with a good energy resolution (for relevant e/γ energies in the endcaps), small R_M, good two-shower separation (e.m. and hadronic), with high lateral and longitudinal readout granularity

A silicon-sensor-based sampling calorimeter (absorber materials – W, Pb, Cu, Stainless Steel) followed by plastic scintillator tiles with direct SiPM readout for the lower radiation level region (absorber materials Cu & SS)

- Calibration of Silicon sensors and scintillator tiles is with MIPs → need good S/N for MIPs after 3ab⁻¹
 - \rightarrow low-capacitance Si cells \rightarrow small area (0.5—1.1cm²)
 - → Scint. cells with small area for high-efficiency light collection
- **Fine longitudinal sampling** needed to provide **good energy resolution** (minimize sampling term) especially with thin active layers (e.g. 100-300µm silicon sensors)

Overall mechanical design of HGCAL heavily constrained by present endcap calorimeters

Present CMS endcap calorimeters

Concept: **remove** complete endcap calo. system and **replace** with HGCAL CMS internal nomenclature: Calorimeter Endcap (CE), divided into CE-E and CE-H

CERN EP Seminar, April 2018

CMS HGCAL: a 52-layer sampling calorimeter with unprecedented number of readout channels

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- HGCAL covers $1.5 < \eta < 3.0$
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M Si channels, 0.5 or 1.1 cm² cell size
 - Data readout from all layers
 - Trigger readout from alternate layers in CE-E and all layers in CE-H
- ~27000 Si modules

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 26 X_0 & ~1.7 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~9.0 λ

CERN EP Seminar, April 2018

VBF H $\rightarrow\gamma\gamma$, with 720 GeV VBF jet (2 charged $\pi + \gamma$) & 175 GeV γ incident on CMS endcap; pileup 200

VBF H $\rightarrow \gamma\gamma$, with 720 GeV VBF jet (2 charged $\pi + \gamma$) & 175 GeV γ incident on CMS endcap; pileup 200

Showers from the two pions become visible in the layers of the hadronic part – CE-H

CERN

Regions of silicon or silicon + scintillator/SiPM governed by radiation field

Fluence in HGCAL spans **5 orders of magnitude** Silicon in high-radiation regions; scint+SiPM in lower-radiation regions

~600m² of silicon sensors (3x CMS tracker) in radiation field peaking at ~10¹⁶n/cm²

Planar p-type DC-coupled sensor pads

- simplifies production technology; p-type more radiation tolerant than n-type
- (consider n-type for 300 μ m sensors in lower radiation region of HGCAL)

Hexagonal sensor geometry preferred to square

- makes most efficient use of circular sensor wafer
- reduces number of sensors produced & assembled into modules (factor ~ 1.3)

8" wafers preferable to 6"

• reduces number of sensors produced & assembled into modules (factor ~ 1.8)

$300 \mu m, 200 \mu m$ and $120 \mu m$ active sensor thicknesses

• match sensor thickness (and granularity) to radiation field for optimal performance

Simple, rugged module design & automated module assembly

• provide high volume, high rate, reproducible module production & handling

Thinner sensors: less decrease in charge collection efficiency vs fluence than thicker sensors

CERN EP Seminar, April 2018

8" silicon sensors will be hexagonal, divided with 3-fold symmetry into hexagonal cells

Hexagonal silicon sensors are divided (mostly) into hexagonal cells, with some special cells

Values for U = 1000.0 V

D. Barney (CERN)

CERN EP Seminar, April 2018

Silicon modules are glued assemblies, made with standardized gantry, wire-bonders etc.

In CE-E, baseplate = 1.2mm CuW, to keep overall density high

CERN EP Seminar, April 2018

HGCAL will include 27000 modules based on hexagonal silicon sensors with 0.5-1cm² cells

Silicon sensor glued to baseplate and PCB containing front-end electronics

Silicon modules are arranged in hexagonal matrices to cover fiducial area of HGČAL

HGCAL will also include 500m² of scintillator tiles with on-tile SiPM readout

For first beam tests, modified CALICE AHCAL used for rear hadron calorimeter: $3x3cm^2$ scintillator tiles + direct SiPM readout

successfully in e.g. CMS HCAL Phase 1 upgrade

Tile boards or "megatiles" limited in size by CTE of

Semi-automated assembly already used for CALICE prototypes: 28000 tiles on 158 boards

30 x 30 x 3 mm³ tiles, automated wrapping, placed by automatic gantry

The front-end electronics are particularly challenging in the compact HGCAL

- Low noise (<2500e⁻) and high dynamic range (~ $0.2 \text{fC} \rightarrow 10 \text{pC}$)*
 - See MIPs (~3.5fC in 300 μ m silicon) with S/N > 2 for whole lifetime of HL-LHC
 - Use 130nm CMOS with 1.5V supply
- Provide timing information to tens of picoseconds
 - Need clock distribution jitter 10-15ps (same specs as for other CMS detector upgrades)
- Have fast shaping time (<20ns) to minimize out-of-time pileup
- On-detector digitization, data concentration and zero suppression
- On-detector creation of trigger sums
- Buffering of data to accommodate 12.5µs L1 latency
- High-speed readout links to interface with 10 Gb/sec lpGBT chipset
- <20mW per channel (roughly limited by cooling power)
- High radiation resistance (~2MGy and $10^{16} n_{eq}/cm^2$)
- And be in production ~2021

*want S/N >4 at beginning of HL-LHC for 1 MIP in 120 μ m silicon ~ 1.5fC; upper limit from 1.5 TeV photon shower producing ~6000 MIPs in a single cell

CERN EP Seminar, April 2018

On-detector electronics are a mixture of HGCALspecific ASICs and "generic" developments

CÉRN

"dummy" cassette being assembled with PCBs containing only connectors and heat loads

8" hexagonal PCBs glued to silicon and baseplates → modules 3 modules connected to a single "motherboard" providing power, data concentrator and optical links

CE-E cassettes are self-supporting sandwich structures with Pb, Cu and Cu/W as absorbers

CERN EP Seminar, April 2018

Dummy cassette is installed in a cold box to study heat-transfer characteristics – tests ongoing

CERN EP Seminar, April 2018

CE-H cassettes: some have all silicon (*a la* **CE-E); some have mixture of Si and scint/SiPM**

CERN EP Seminar, April 2018

Wedge-shaped "Cassettes" containing arrays of silicon modules or silicon+scintillator/SiPM

Measured and expected HGCAL performance

Prototype silicon modules + CALICE AHCAL tested at CERN in 2017; more in 2018

Existing ASIC (Skiroc2) used in 2016; evolution (Skiroc2-CMS) used in 2017/18

CERN EP Seminar, April 2018

Beam tests in 2016 & 2017 validated basic design; good stability; MIPs seen in all parts

CERN EP Seminar, April 2018

Beam tests in 2016 & 2017 with few layers validated basic design; good comparison to simulation

Distributions from electrons and pions match those predicted by simulation (to within 5%) demonstrating accuracy and scalability First indications that HGCAL performance is as expected from simulation More test-beam data will be taken in 2018

Silicon sensors also have good intrinsic timing resolution that does not degrade with radiation

As an illustration, granularity and timing can mitigate the effects of pileup \rightarrow 5D detector!

CERN

Possible due to the choice of CE sampling parameters and electronics

VBF (H $\rightarrow\gamma\gamma$) event with one photon and one VBF jet in the same quadrant,

Plots show cells with Q > 12fC (~3.5 MIPs @ 300μ m - threshold for timing measurement) projected to the front face of the endcap calorimeter. Concept: identify high-energy clusters, then make timing cut to retain hits of interest

G4 simulation used to predict performance of HGCAL in presence of pileup: e/y **resolution**

Longitudinal and transverse granularity provide excellent handles for electron/photon id

CERN EP Seminar, April 2018

Challenges ahead

CERN EP Seminar, April 2018

43

HGCAL TDR was submitted in Nov. 2017 R&D continues; construction starts in 2020

CERN European Organization for Nuclear Research CERN-LHCC-2017-023 CMS-TDR-17-007 Organisation européenne pour la recherche nucléaire 27 Nov 2017 CMS pril 2018! proved The Phase-2 Upgrade of the CMS-TDR-17-007 **CMS Endcap** Calorimeter http://cds.cern.ch/record/2293646 **Technical Design Report**

- Finalization of design, prototyping towards final systems (2 years)
- EDR (~May/June 2020) and ESRs
 - This is a **much** faster timescale than the original LHC-experiment construction phase
- Market Surveys, orders, preproduction, qualification of final components
- Production starts in <3 years !

Synoptic view of HGCAL: ~5 years to finalize design, produce components, assemble, install

Highly-granular calorimeters, such as HGCAL, will provide much more information than any previous calorimeter.

Building and exploiting the HGCAL brings major technological challenges. An exciting time for detector and software development!