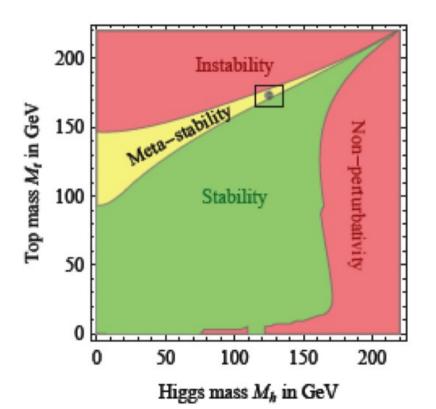
Physics at e+e- collider: Z, H, W, top, BSM & beam parameter

14:30 - 17:00 Parallel session 2: Physics Physics/Simulation Session Manager Ada Farilla ada.farilla@roma3.infn.it Convener: Fulvio Piccinini, Manqui Ruan Location: Aula A3 - DAMS

- 14:30 **Z pole+WW** 40' Speaker: Paolo Azzurri (PI)
- 15:10 **Z+Higgs** *30'* Speaker: Yaquan Fang
- 15:40 **Top** 20' Speaker: Marcel Vos
- 16:00 **BSM** *30'* Speaker: Barbara Mele
- 16:30 Beam parameters 30' Speaker: Alain Blondel (University of Geneva)

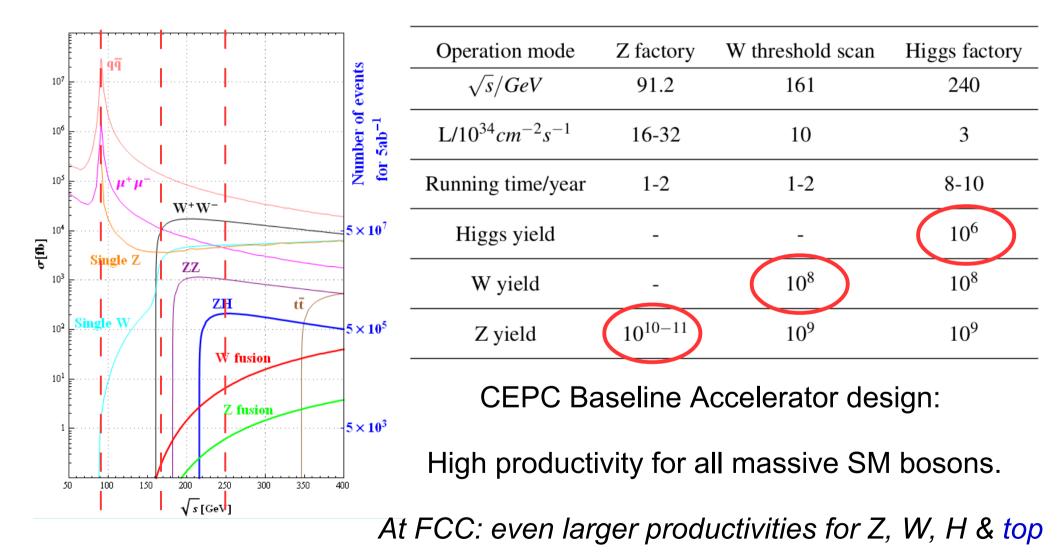

CEPC WS@Rome

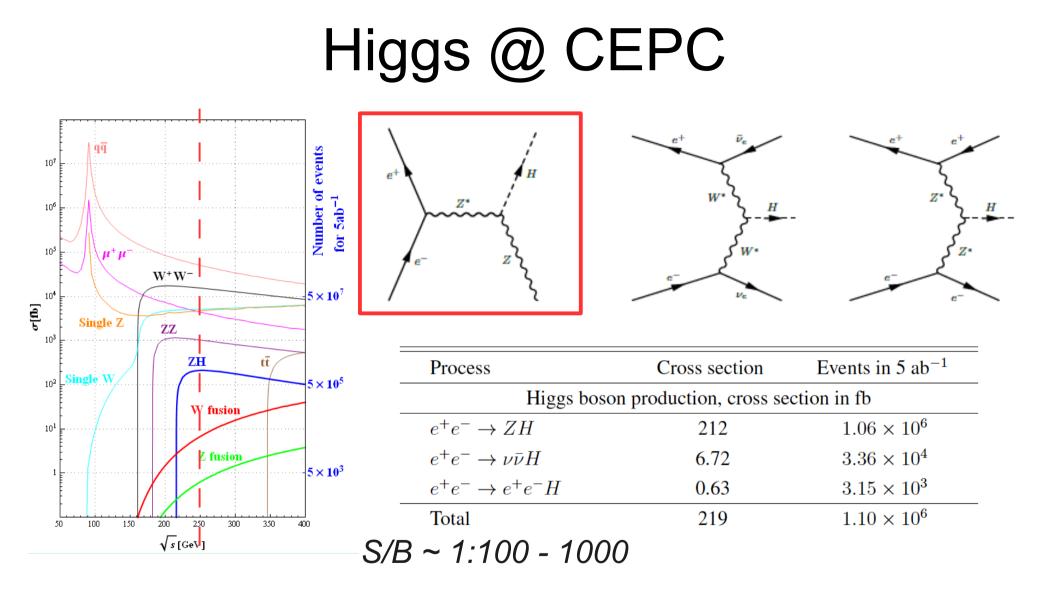
Mangi Ruan

SM is **NOT** the end of story...

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry
- Most issues related to Higgs

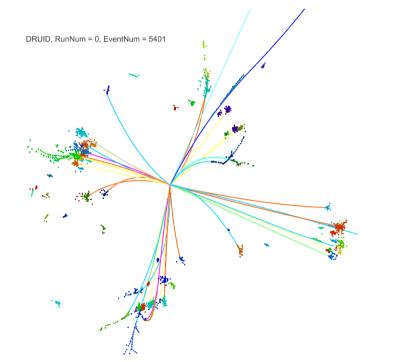
m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)²!?

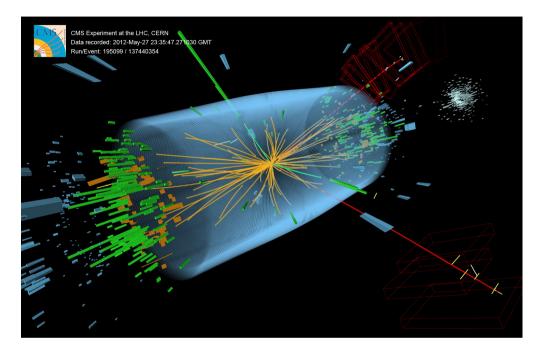



luminosity comparison

e⁺e⁻ Collider Luminosities

Boson yields @ CEPC

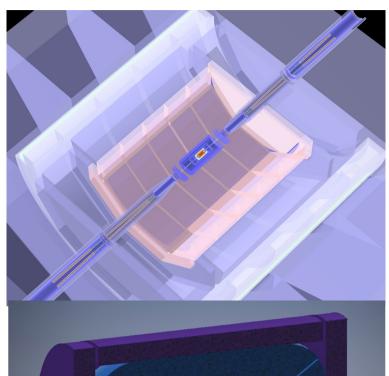


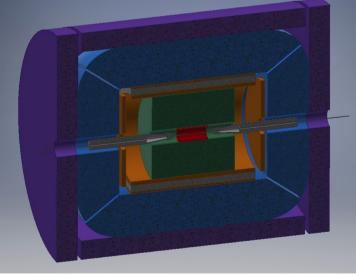

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

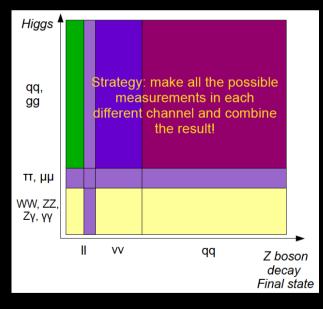
CEPC WS@Rome

Higgs measurement at e+e- & pp

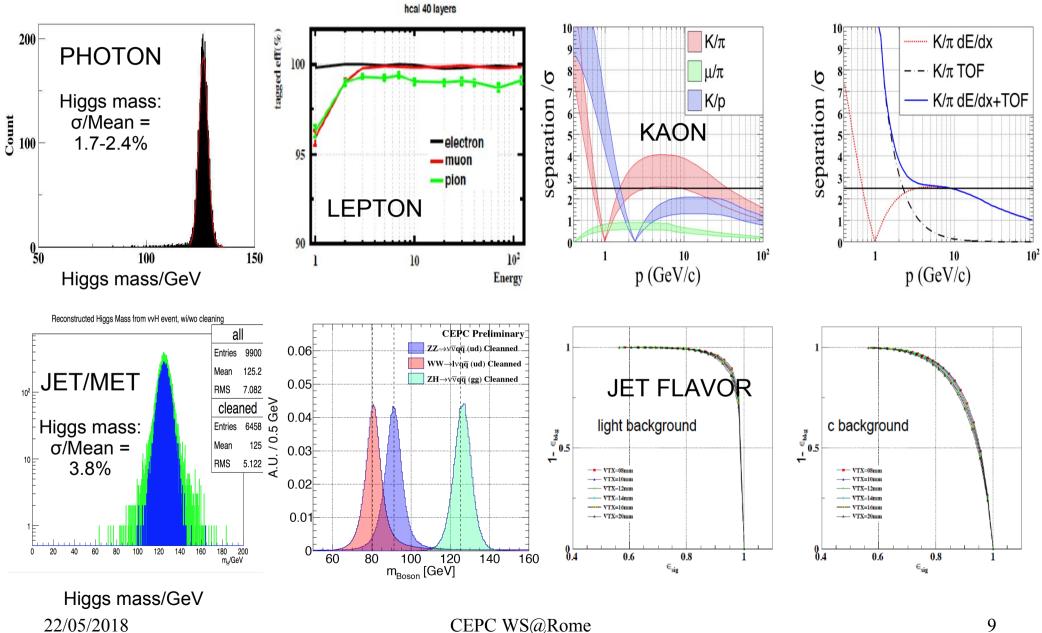



	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

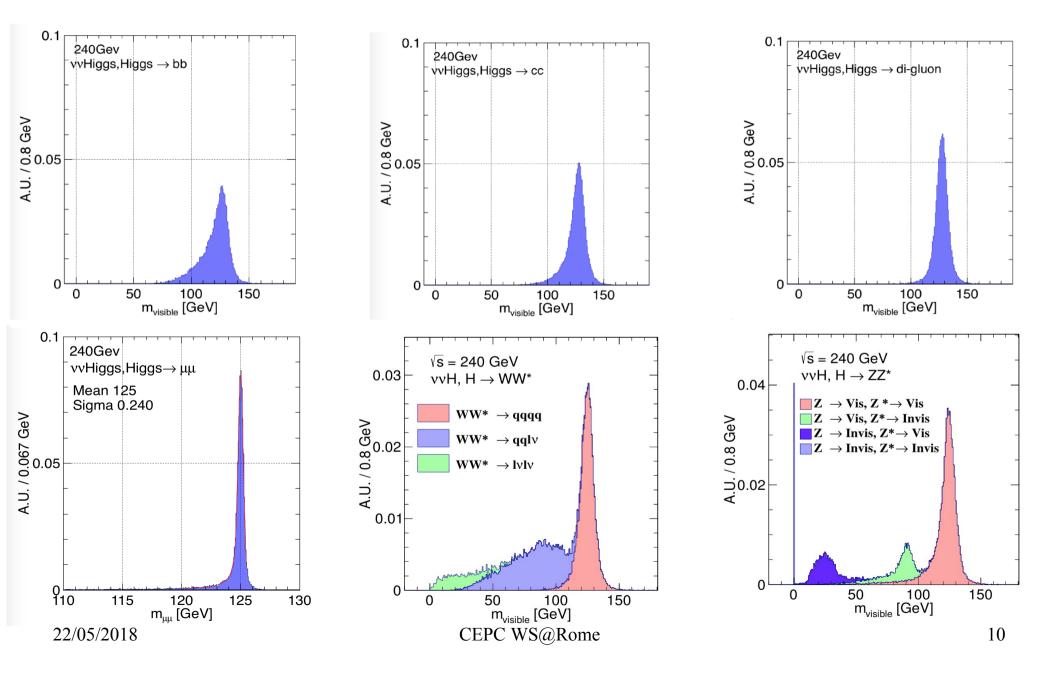
CEPC WS@Rome Complementary 6


Detectors

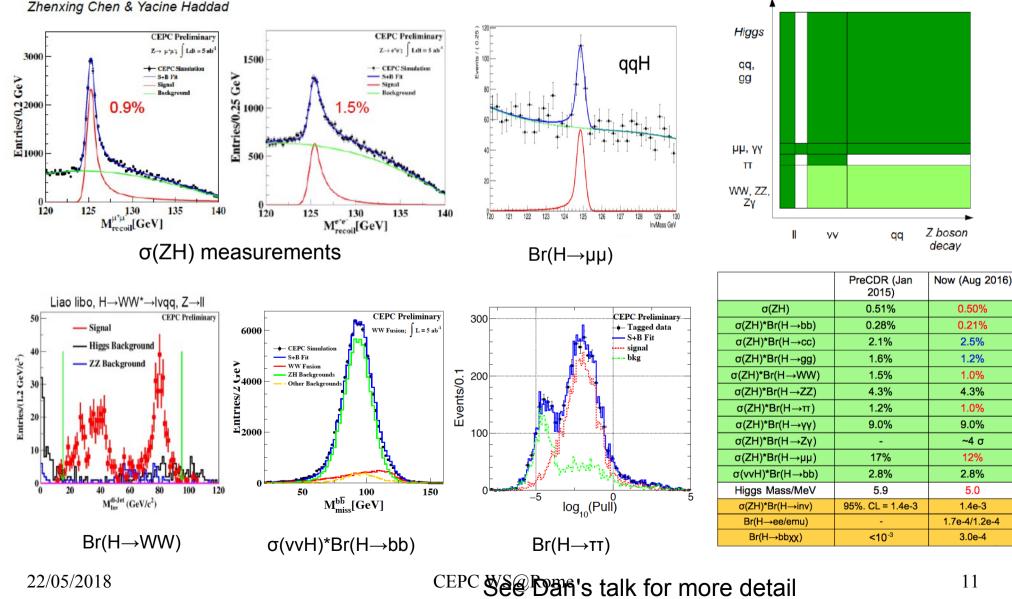
- CEPC:
 - APODIS (Baseline)
 - A PFA Oriented Detector for HIggS factory (Reference: ALEPH, SiD and ILD)
 - Low material tracker + ultrahigh granularity calorimeter (serve also as ToF) + large Solenoid
 - Dedicated MDI
 - Fully implemented into Geant 4 simulation and full reconstruction
 - Optimized versus Physics Benchmarks
 - IDEA (Alternative)
 - Wire Chamber + Dual Readout based: implementing into full simulation
- FCCee:
 - CLD & IDEA

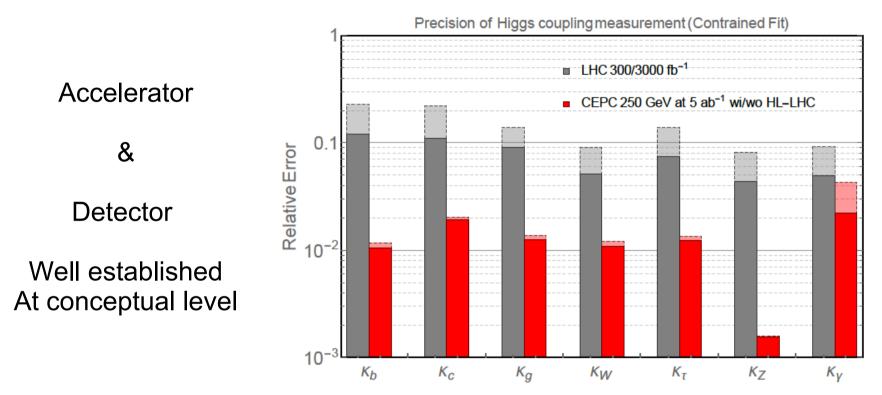


Arbor Reconstruction



Performance at
Lepton
Kaon
Photon
Tau
JET


PFA Oriented Reconstruction


Higgs Signals at APODIS

CEPC: absolute Higgs measurements

Physics Potential on Higgs

- The nature of Higgs boson & EWSB, + flavor physics...
 - Higgs signal strengths (In kappa framework): expected accuracy roughly 1 order of magnitude better than HL-LHC
 - Absolute measurement to the Higgs boson: 2-3% level accuracy of Higgs boson width, 10⁻³ 10⁻⁵ up limit to Higgs invisible/exotic decay modes (improved by at least 2 orders of magnitude comparing to HL-LHC)

Status of the Higgs white paper

Precision Higgs Physics at the CEPC

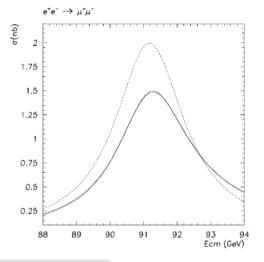
ABSTRACT: Version 0.3, Date: April 18, 2018

The discovery of a Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations has provided the first insight into the scalar sector of the Standard Model and beyond. The particle will be the subject of extensive studies of the ongoing LHC program. A lepton collider Higgs factory has been proposed as a logical next step beyond the LHC to measure the properties and study potential new physics associated with the Higgs boson. The Circular Electron Positron Collider (CEPC) is one of such proposed Higgs factories. The CEPC is an e^+e^- circular collider with a center-of-mass energy of ~ 240 - 250 GeV in a tunnel of approximately 100 km in circumference proposed by China. It will be followed by a Super Proton-Proton Collider (SPPC) in the same tunnel with an energy 70 - 100 TeV. In this paper, we present the first estimates on the precision of Higgs property measurements achievable at the CEPC.

	8.4	Analysis methods	53
	8.5	Summary and Conclusions	54
9	Imp	olications	55
	9.1	Electroweak phase transition	55
	9.2	Naturalness of the electroweak scale	57
10	Cor	nclusion and Discussion	59

Contents

1	Introduction	
2	The CEPC Conceptual Detector	
	2.1 The CEPC operation scenarios	
	2.2 Conceptual detector design	
	2.3 Object reconstruction and identification	
	2.3.1 Leptons and Photons	
	2.3.2 Jets	
	2.4 Ongoing optimization	1
3	Production cross sections of signal and background processes	1
4	Higgs boson tagging using recoil mass	1
	4.1 $Z \rightarrow \ell^+ \ell^-$	1
	4.2 $Z \rightarrow q\bar{q}$	1
	4.3 Measurements of $e(ZH)$ and m_{H}	1
5	Analyses of Individual Decay Modes	1
	5.1 $H \rightarrow b\bar{b}, c\bar{c}, gg$	2
	5.2 $H \rightarrow WW^*$	
	5.3 $H \rightarrow ZZ^*$	2
	5.4 $H \rightarrow \gamma\gamma$	2
	5.5 $H \rightarrow Z\gamma$	2
	5.6 $H \rightarrow \tau^+ \tau^-$	2
	5.7 $H \rightarrow \mu^+\mu^-$	2
	5.8 $H \rightarrow inv$	3
	5.9 $\sigma(e^+e^- \rightarrow \nu \pi H) \times BR(H \rightarrow b\bar{b})$	3
6	Combinations of Individual Measurements	3
	6.1 Combined Measurements of $\sigma \times BR$ and BR	3
	6.2 Measurement of Higgs boson width	3
7	Coupling and EFT Analyses	3
	7.1 Coupling fits	3
	7.2 Higgs boson self-coupling	
	7.3 Effoctive-field-theory analysis	4
8	Constraining anomalous HVV interactions at the CEPC collider	5
	8.1 Introduction to HVV anomalous couplings	5
	8.2 Kinematics in the $e^+e^- \rightarrow Z^* \rightarrow ZH$ process	
	8.3 Expected signal and backgrounds	5


Z+Higgs physics at Circular e+e- collider (Y. Fang, IHEP)

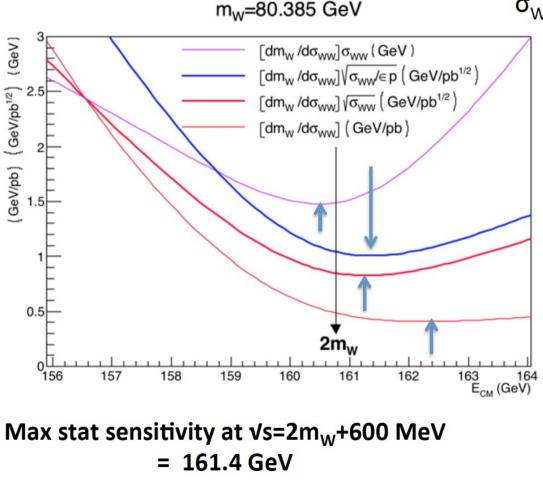
22

the Giga/Tera Z pole precision

CEPC : 10^{9} - 10^{11} Z decays : **LEP1 x 10^{2-4} FCCee**: 4 10^{12} Z decays : **LEP1 x 10^{5}**

Radiation function calculated up to $O(\alpha^3): 10^{-5}$ precision $\rightarrow \Delta m_Z \approx 100$ KeV

Continuous E_{CM} calibration (resonant depolarization)
 → Z mass and width : 100-500 KeV (syst)


model (in) dependent (S-matrix) approach for γZ interference effects off shell data needed for precise independent approach (reduced th assumptions)

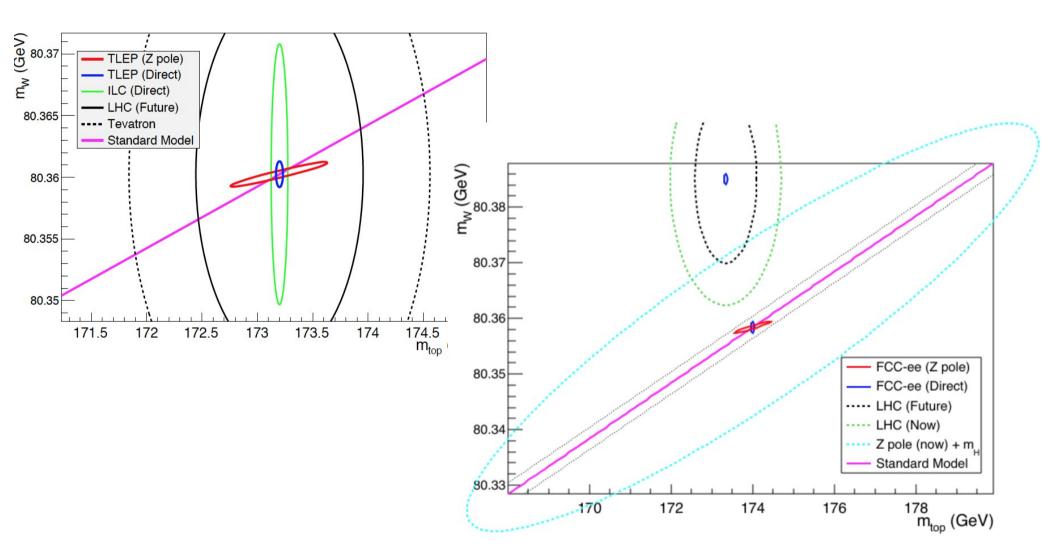
beam spread (~60 MeV) and beams crossing angle (~30mrad) $\,$ monitored with $\mu + \mu -$

22/05/2018

CEPC WS@Rome

m_W from σ_{WW} : sensitivity vs E_{CM}

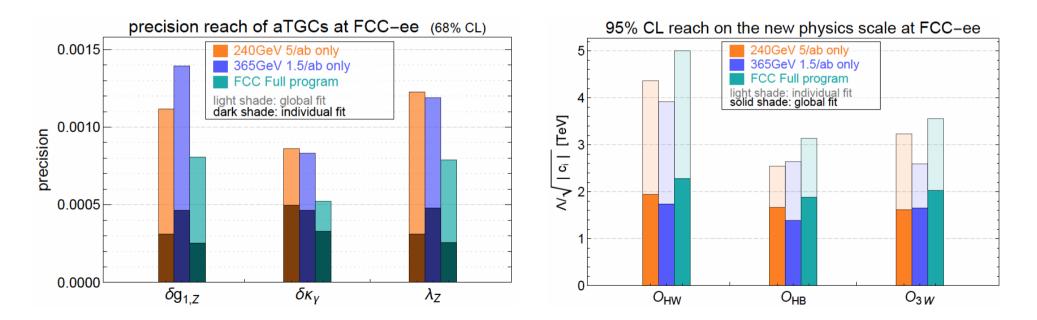
 σ_{WW} with YFSWW3 $\underline{1.18}$


Vep with fixed : ϵ =0.75 and σ_{B} =0.3pb

statistical precision with L= 8/ab $\rightarrow \Delta m_w \approx 0.35$ MeV

need syst control on :

- ΔE(beam)<0.35 MeV (**4x10**-6)
- Δε/ε, ΔL/L < 2 10⁻⁴


Z pole : effects on EW fit

Triple gauge couplings

A binned chi-square fit is performed to estimate the precision reach of the three aTGCs at the FCCee.

Only the semileptonic channel, with one W decaying to e or µ is used. The chi-square is summed over all bins of the five angles, considering only statistical uncertainties of signal events. The ambiguities in the reconstructions of the hadronic W decay angles (which are "folded") are taken into account.

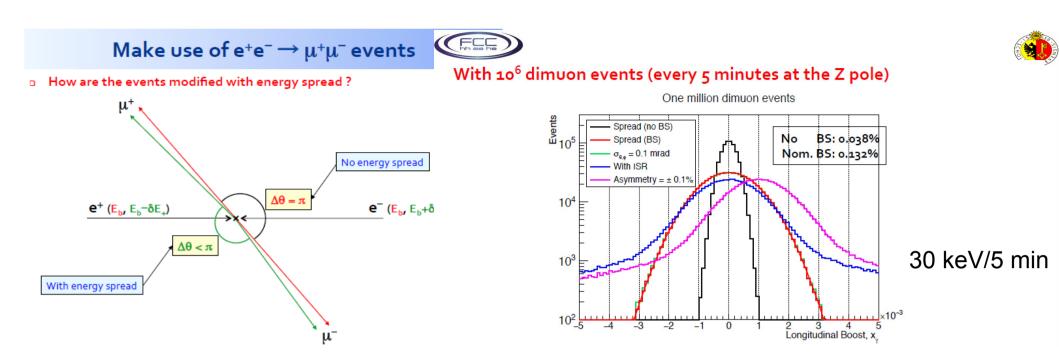
LEP2 precision : 2-4 10⁻²

current LHC limits A/Vc<100-400 GeV

EW measurements at FCC/CEPC

- No "a priori wall" identified
- Key observables can be measured to an accuracy 1-2 orders of magnitude better than LEP
- Systematic analysis: part of the requirement on Detector & beam qualified.

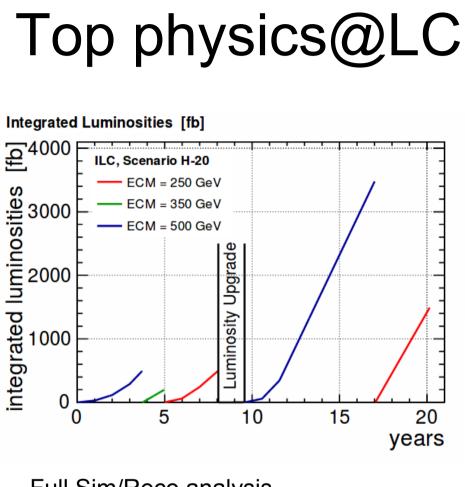
Paramete	r Dominating source	expected uncertainty	improvement w.r.t. LEP				
m_Z	beam energy	100 keV	20				
Γ_Z	beam energy	100 keV	20		Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
σ^0_{had}	luminosity	$5 imes 10^{-3} \text{ nb}$	20	\mathcal{A}_e	$5. \times 10^{-5}$	$1. \times 10^{-4}$	50
R_{ℓ}^{naa}	exp. acceptance	5×10^{-5}	8	\mathcal{A}_{μ}	2.5×10^{-5}	1.5×10^{-4}	30
102	exp. acceptance	0 / 10	0	$\mathcal{A}_{ au}$	$4. \times 10^{-5}$	$3. \times 10^{-4}$	15
				\mathcal{A}_b	2×10^{-4}	$30 imes 10^{-4}$	5
				\mathcal{A}_{c}	3×10^{-4}	$80 imes 10^{-4}$	4
	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP	$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$	100
$R_{\mu}\left(R_{\ell}\right)$	10^{-6}	5×10^{-5}	20	$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	6.6×10^{-6}	75
R_{τ}	$1.5 imes 10^{-6}$	10^{-4}	20				
$R_{\rm e}$	$1.5 imes 10^{-6}$	3×10^{-4}	20				
$R_{\rm b}$	5×10^{-5}	3×10^{-4}	10		FCCee		
R_{c}	$1.5 imes 10^{-4}$	15×10^{-4}	10				



"on the importance of beams parameters for <u>e+e-</u> colliders Luminosity Luminosity measurement longitudinal beam polarization transverse beam energy calibration, beam energy profile/spread"

Event statistics		CC-ee	10-	√s [GeV]	E _{CM} errors:
Z peak	E _{cm} : 91 GeV	5 10 ¹² e+e-	→ z	LEP x 10 ⁵	100 keV
WW threshold	E: 161 GeV	10 ⁸ <u>e+e</u> -	\rightarrow ww	LEP x 2.10 ³	300 <u>keV</u>
ZH <u>threshold</u>	E _{cm} : 240 GeV	10 ⁶ <u>e+e</u> -	→ zh	Never done	1 MeV
tt threshold	E _{cm} : 350 GeV	10 ⁶ e+e-	→tt	Never done	2 MeV

observable	Physics	Present precision		FCC-ee stat Syst Precision	FCC-ee key	Challenge
M _Z MeV/c2	Input	91187.5 ±2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections
Γ_{z} MeV/c2	Δρ (T) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections
$\boldsymbol{R}_l = \frac{\Gamma_h}{\Gamma_l}$	α_{s,δ_b}	20.767 <mark>(25)</mark>	Z Peak	0.0001 (2-20)	Statistics	QED corrections
N_v	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak Z+γ(161 GeV)	0.00008 (40) 0.001	->lumi meast Statistics	QED corrections to Bhabha scat.
R _b	δ_{b}	0.21629 <mark>(66)</mark>	Z Peak	0.000003 (20-60)	Statistics, small IP	Hem. correlations
A _{LR}	Δρ, ε _{3 ,} Δα (Τ, S)	sin²θ w ^{eff} 0.23098 <mark>(26)</mark>	Z peak, Long. polarized	sin²θ _w ^{eff} ± 0.000006	4 bunch scheme	Design experiment
A_{FB}^{lept}	Δρ, ε _{3 ,} Δα (Τ, S)	sin ²θ _w ^{eff} 0.23099 <mark>(53)</mark>		sin ² θ _w ^{eff} ±0.000006	E_cal & Statistics	
M _W MeV/c2	Δρ, ε _{3 ,} ε _{2,} Δα (Τ, S, U)	80385 ± 15	Threshold (161 GeV)	0.3 MeV <0.5 MeV	E_cal & Statistics	QED corections
m_{top} MeV/c2 24/0	Input 05/2018	173200 ± 900	Threshold scan	~10 MeV	E_cal & Statistics	Theory limit at 50 MeV?


FCC-ee design study is placing a high emphasis on the fundamentals of systematic errors

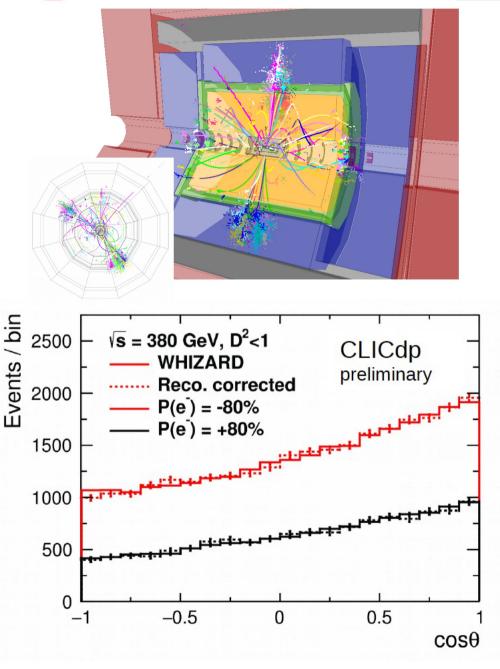
- -- Maximize total luminosity
- -- luminosity measurement
- -- beam energy calibration with transverse beam polarization
- -- the need for longitudinal polarization is not very compelling, and it is difficult to obtain it without losing 1-2 orders of magnitude in luminosity

We can conclude that the energy calibration for Z and W will match the goals.

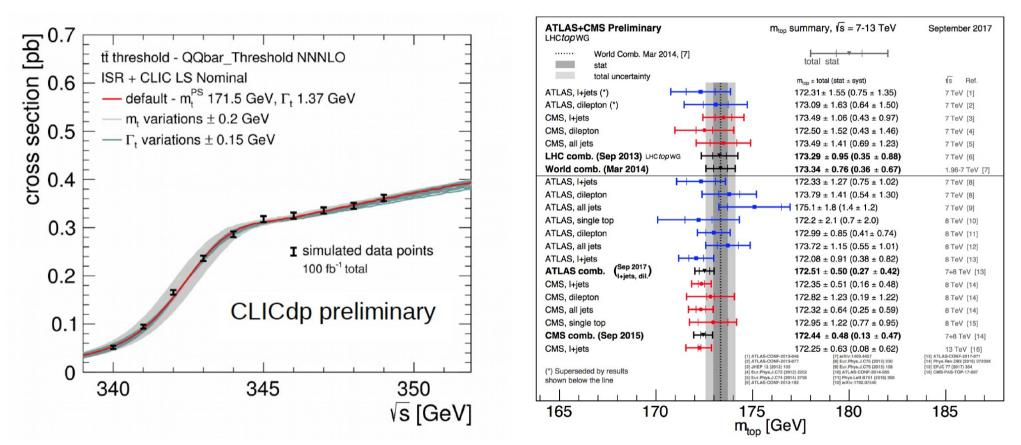
It could be better with more work

We can conlcude that luminosity will be measured at 2 10⁻⁴ relative level with low angle Bhabha scattering. Cross-calibration with ee $\rightarrow \gamma\gamma$ might improve the absolute normalization

Full Sim/Reco analysis

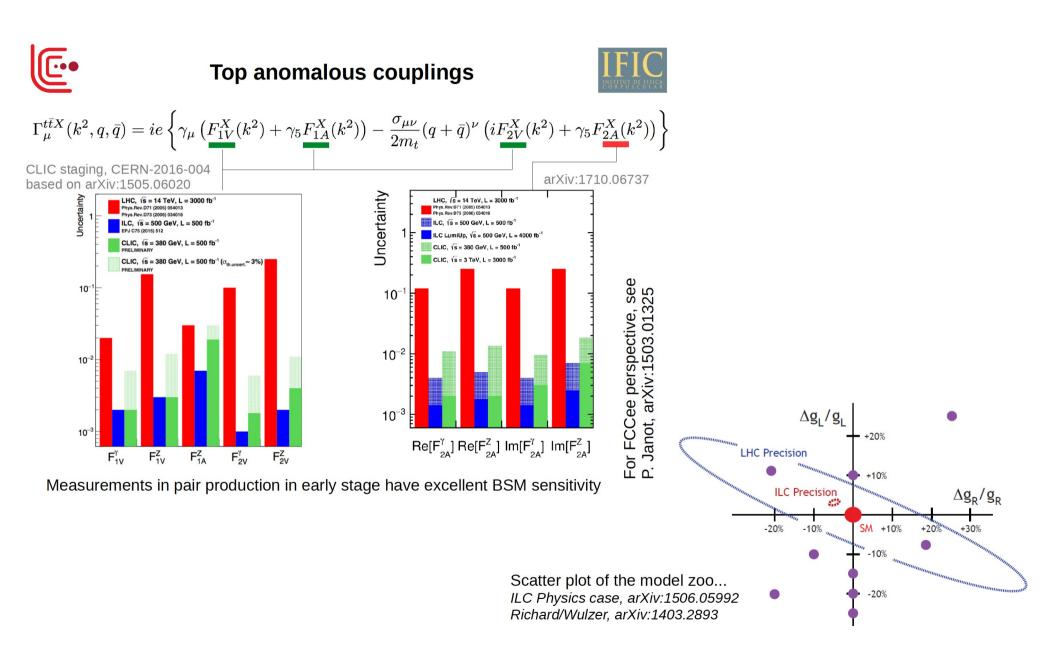

Observables:

Top: mass, width, FCNC, ... Top quark EW couplings Top + Higgs: Yukawa coupling


Boosted top quark production: $\sqrt{s} > 1$ TeV

22/05/2018

Top mass threshold scan



Pole mass accuracy significantly improved...

From the theoretical side: ppl still need to understand what we really measured

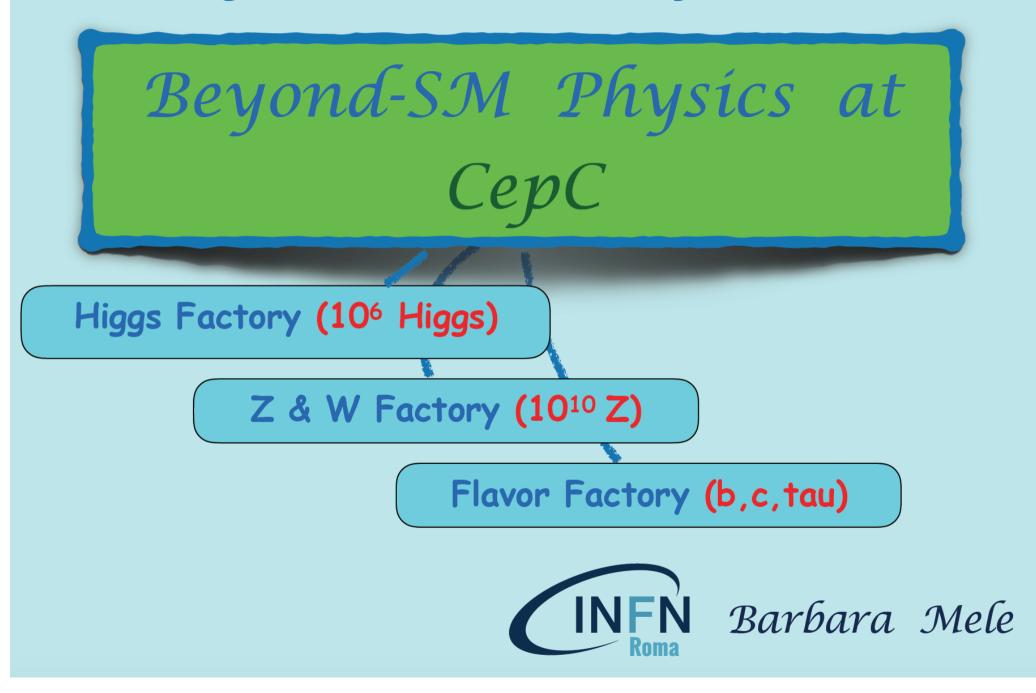
A very competitive top quark mass measurement:

 $\Delta m_{t} \sim 50 \text{ MeV}$ (= 3 x 10⁻⁴, cf. $\Delta m_{b} \sim 1\%$)

Top measurement at LC

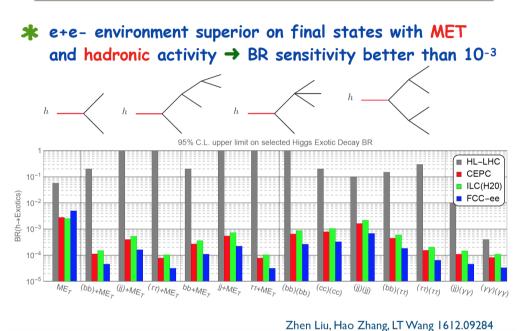
The LC top physics program complements hadron colliders in important ways. The precision of several key measurements exceeds the HL-LHC significantly:

- top mass measurement: $\Delta m_t \sim 50 \text{ MeV}$
- FCNC interactions: competitive for $t \rightarrow c\gamma$, $t \rightarrow ch$
- top quark EW couplings: **improved by order of magnitude**
- the determination of the top Yukawa coupling to 3-4%


With this precision, these measurements have the potential answer important questions,

hopefully offering guidance towards a more complete theory

CEPC workshop, Marcel Vos


45

Workshop on the Circular Electron-Positron Collider - EU edition Università degli Studi Roma Tre, 24-26 May 2018

Exotic Higgs & Z decay modes, Dark photon, WIMP, sterile neutrino...

Exotic Higgs decays

CERN 17 January 201

Rarbara Mele

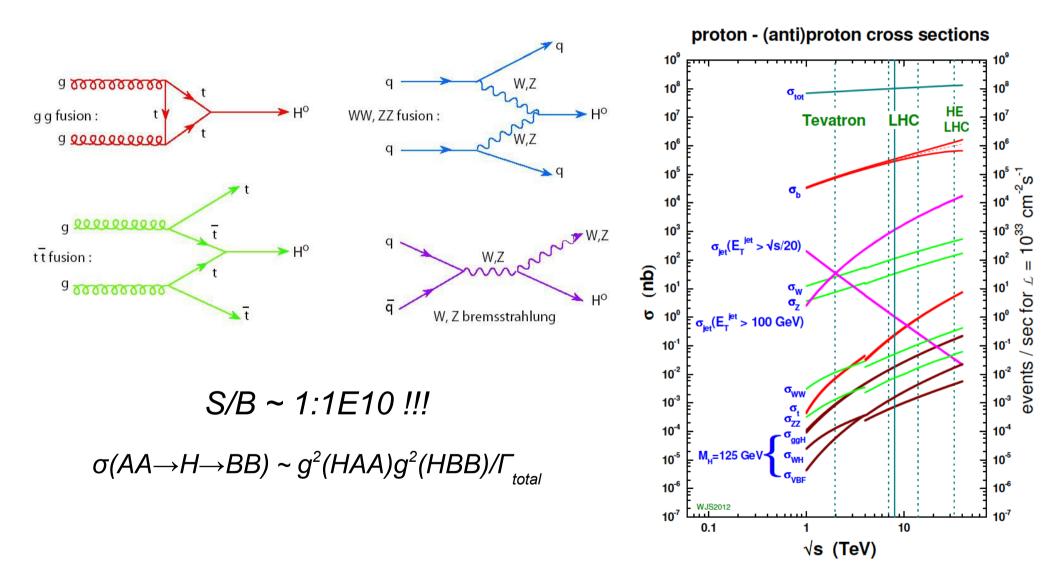
k long	list of models	вцс) 10-1 10-3 10-4 10-6 10-1 10-8 10-1 10-8		
exotic decays	topologies	nres	, Wang, Xue, 1712.07237	$1A: Z \rightarrow \chi_1 \chi_2 \rightarrow \chi_1 \chi_1 \gamma$
	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	$1A:\frac{1}{\Lambda_{14}}\bar{\chi_2}\sigma^{\mu\nu}\chi_1B_{\mu\nu}$ (MIDM)	
$Z \rightarrow E + \gamma$	$Z \rightarrow \chi \bar{\chi} \gamma$	0	1B: $\frac{1}{\Lambda_{1B}^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)	$= 1B: Z \rightarrow \chi \overline{\chi} \gamma$
$Z \rightarrow I \!$	$Z \rightarrow a\gamma \rightarrow (E)\gamma$	1	1C: $\frac{1}{4\Lambda_{1C}} a B_{\mu\nu} \tilde{B}^{\mu\nu}$ (long-lived ALP)	$1C: Z \rightarrow a \gamma \rightarrow MET + \gamma$
	$Z \rightarrow A' \gamma \rightarrow (\bar{\chi} \chi) \gamma$	1	1D: $\epsilon^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (WZ terms)	$2A:Z \to \phi_d A' \to (\gamma\gamma)(\chi\overline{\chi})$
	$Z \to \phi_d A' , \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	2A: Vector portal	$2C: Z \to \chi_2 \chi_1 \to (\gamma \gamma) \chi_1 \chi_1$
$Z \to {E \!\!\!\!/} + \gamma \gamma$	$Z \to \phi_H \phi_A, \phi_H \to (\gamma \gamma), \phi_A \to (\bar{\chi} \chi)$	2	2B: 2HDM extension	
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	2C: Inelastic DM	$2D:Z \rightarrow \chi_2 \chi_2 \rightarrow \gamma \chi_1 \gamma \chi_1$
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	2D: MIDM	$3A: \mathbb{Z} \to \phi_d A' \to (\chi \overline{\chi})(l^+ l^-)$
	$Z \to \phi_d A', A' \to (\ell^+ \ell^-), \phi_d \to (\bar{\chi} \chi)$	2	3A: Vector portal	$= 3B:Z \rightarrow A'SS \rightarrow (l^+l^-) + MET$
$Z \to \not\!$	$Z \to A'SS \to (\ell\ell)SS$	1	3B: Vector portal	
	$Z \to \phi(Z^*/\gamma^*) \to \phi \ell^+ \ell^-$	1	3C: Long-lived ALP, Higgs portal	$3E:Z \rightarrow \chi_2 \chi_1 \rightarrow l^+ l^- + MET$
	$Z \to \chi_2 \chi_1 \to \chi_1 A' \chi_1 \to (\ell^+ \ell^-) \not \!\!\! E$	1	3D: Vector portal and Inelastic DM	$3F:Z \rightarrow \chi \overline{\chi} l^+ l^-$
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \ell^+ \ell^-$	0	3E: MIDM, SUSY	$= 4A: Z \rightarrow \phi_d A' \rightarrow (\chi \overline{\chi})(jj)$
	$Z \rightarrow \bar{\chi} \chi \ell^+ \ell^-$	0	3F: RayDM, slepton, heavy lepton mixin	
	$Z \to \phi_d A' \to (\bar{\chi}\chi)(jj)$	2	4A: Vector portal	$4B:Z \rightarrow \phi_d A' \rightarrow (b\overline{b})(\chi\overline{\chi})$
$Z \to {I\!\!\!E} + JJ$	$Z \to \phi_d A' \to (bb)(\bar{\chi}\chi)$	2	4B: Vector portal + Higgs portal	$4C:Z \rightarrow \chi_2 \chi_1 \rightarrow \chi_1 \chi_1 b\overline{b}$
	$Z \to \chi_2 \chi_1 \to b b \chi_1 + \chi_1 \to b b \not\!\!\!\! E$	0	4C: MIDM	$= 5A: Z \rightarrow \phi_d A' \rightarrow (ij)(ij)$
$Z \rightarrow (JJ)(JJ)$	$Z \rightarrow \phi_d A', \phi_d \rightarrow jj, A' \rightarrow jj$	2	5A: Vector portal + Higgs portal	
	$Z \rightarrow \phi_d A', \phi_d \rightarrow b \bar{b}, A' \rightarrow j j$	2	5B: vector portal + Higgs portal	$5B:Z \rightarrow \phi_d A' \rightarrow (b\overline{b})(jj)$
	$Z \to \phi_d A', \phi_d \to b\bar{b}, A' \to b\bar{b}$	2	5C: vector portal + Higgs portal	5C:Z $\rightarrow \phi_d A' \rightarrow (b\overline{b})(b\overline{b})$
$Z \rightarrow \gamma \gamma \gamma$	$Z \rightarrow \phi \gamma \rightarrow (\gamma \gamma) \gamma$	1	6A: ALP, Higgs portal	

U. Roma Tre. 24 May 2018

Br[7]

* an ee circular collider running at ZH,WW, Z with L ~ 10⁽³⁴⁻³⁶⁾ cm⁻²s⁻¹ can go beyond LHC reach in many different BSM sectors

ideal setup for discovering (very) new weakly interacting pls
22/05/201: (additional light Higgses with reduced coupling not covered here...) 27


Barbara Mele

Summary: Great opportunity

- The precise measurement of the Higgs
 - Detector & Accelerator studies confirms 0.1 1/% precision
 - Precision mainly limited by statistic
- EW measurement: no "a priori" wall on the precision,
 - Promising results in systematic study
 - Still need huge efforts, especially on the theoretical uncertainty control
 - Requirement on detector & beam calibrations are partly quantified -> and the most important components is addressed (see Alain's talk)
- Top physics:
 - LC provides excellent coverage for the top associated measurements, which is highly complementary to the HL-LHC
 - Measurements also explored at FCC
- BSM: Promising
 - Exotic behaviors & New particle searching

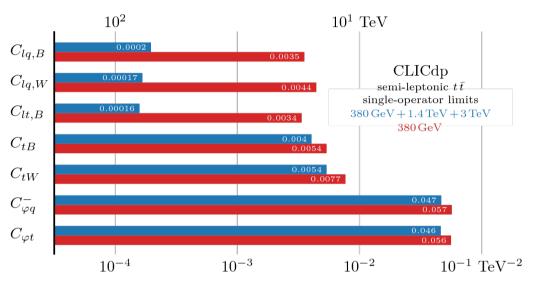
Thank you!

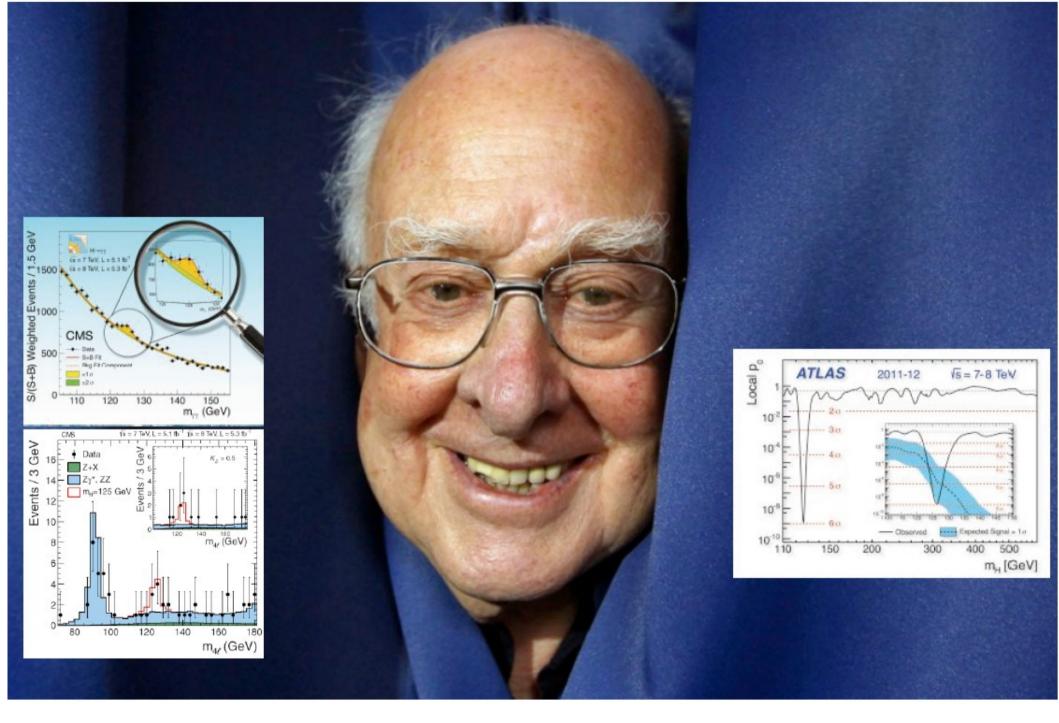
Higgs @ LHC

Outlook

* an ee circular collider running at ZH,WW, Z with L ~ 10⁽³⁴⁻³⁶⁾ cm⁻²s⁻¹ can go beyond LHC reach in many different BSM sectors

***** it is "not just" a wonderful Higgs precision probe !

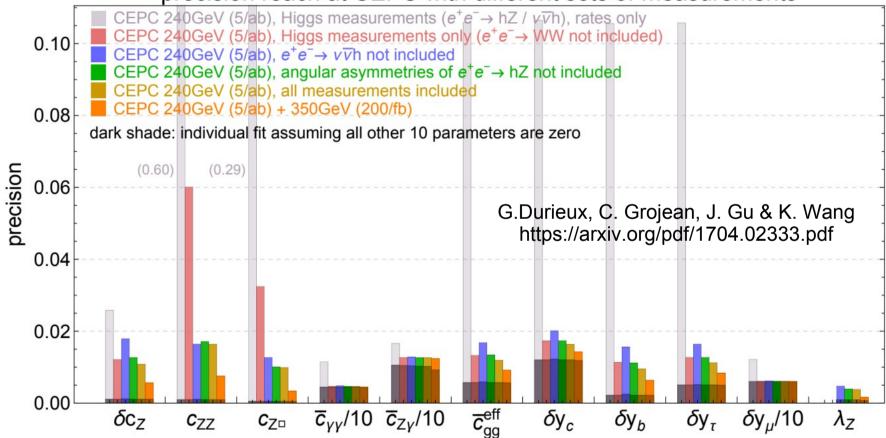

***** EWPT : order of magnitudes improvements wrt LEP


* ideal setup for discovering (very) new weakly interacting pls (additional light Higgses with reduced coupling not covered here...)

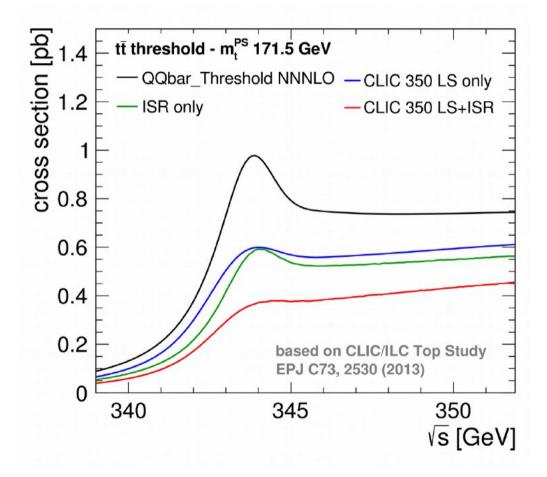
Hidden/Dark (SM-uncharged) Sectors can provide new signatures to scrutinise

***** many different studies, just mentioned a few...

Complementarity: Low & High E EM & Higgs & top



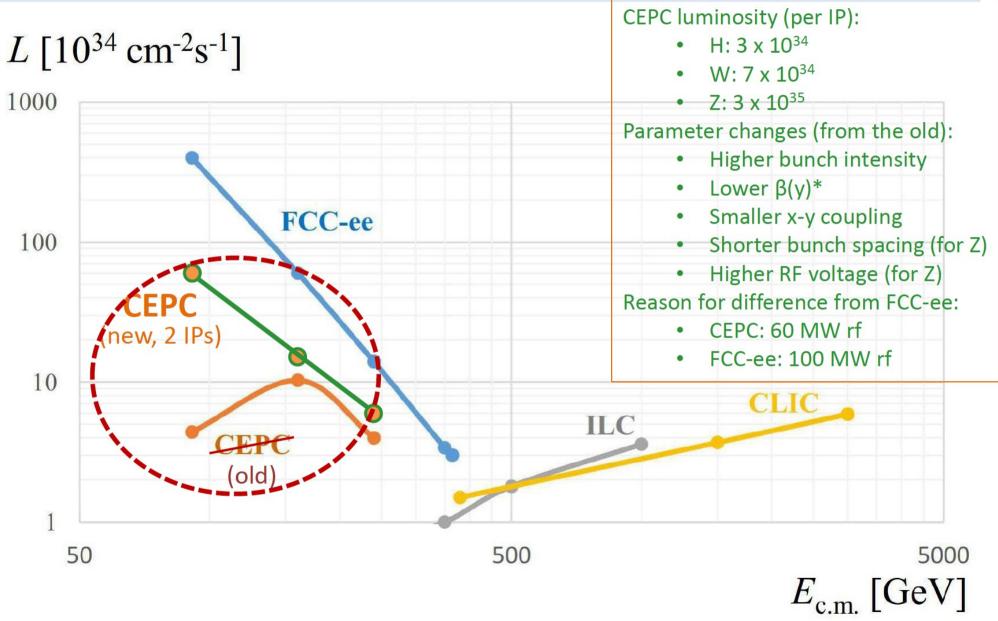
Conclusions


- CEPC/FCCee will be a total game-changer for EW W/Z physics measurements
- No "a priori" walls on the road map to achieve the FCC goals for EW precision measurements but a lot of work, firstly on the theoretical calculations side
- At the Z, off peak data will play an important role (more than at LEP times)
 - can deliver $a_{QED}(m_Z^2)$ to 3×10^{-5}
- The WW threshold lineshape is a great opportunity to measure both m_W and Γ_W :
 - optimal points to take data are $\sqrt{s}=2m_w+1.5$ GeV (**F-insensitive**) and $\sqrt{s}=2mw-2-3$ GeV (-Foff shell)
- Huge potential for other W physics measurements including higher energy data :
 - direct m_w, W BRs, TGCs
- Work from experimentalist needed to evaluate with care limiting systematics, study ways to overcome them, and reflect on the detector design consequences: opportunities to contribute

Pheno-studies: EFT & Physics reach

precision reach at CEPC with different sets of measurements

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)



• Expertise, synergies, consensus

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 – 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	$P(Neutron \rightarrow \gamma) = 1-5\%$
Charged Kaons**	86 – 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathbb{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	$P(uds \rightarrow b) = 1\%$ $P(c \rightarrow b) = 10\%$
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

CEPC Luminosity

CEPC CDR Baseline Parameters (Jan. 2018)

D. Wang

	Higgs	W	Z	
Number of IPs		2		
Energy (GeV)	120	80	45.5	
Circumference (km)		100		
SR loss/turn (GeV)	1.73	0.34	0.036	
Half crossing angle (mrad)		16.5		
Piwinski angle	2.58	4.29	16.4	
N_{e} /bunch (10 ¹⁰)	15	5.4	4.0	
Bunch number (bunch spacing)	242 (0.68us)	3390 (98ns)	8332 (40ns)	
Beam current (mA)	17.4	88.0	160	
SR power /beam (MW)	30	30	5.73	
Bending radius (km)		10.6		
Momentum compaction (10 ⁻⁵)		1.11		
$\beta_{IP} x/y (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	
Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.17/0.004	
Transverse σ_{IP} (um)	20.9/0.068	13.9/0.049	5.9/0.078	
$\xi_x/\xi_y/\mathrm{IP}$	0.031/0.109	0.0148/0.076	0.0043/0.04	
$V_{RF}(\text{GV})$	2.17	0.47	0.054	
f_{RF} (MHz) (harmonic)		650 (216816)		
Nature bunch length σ_z (mm)	2.72	2.98	3.67	
Bunch length σ_z (mm)	3.26	3.62	6.0	
HOM power/cavity (kw)	0.54 (2cell)	0.47(2cell)	0.49(2cell)	
Energy spread (%)	0.1	0.066	0.038	
Energy acceptance requirement (%)	1.52			
Energy acceptance by RF (%)	2.06	1.47	0.76	
Photon number due to beamstrahlung	0.29	0.16	0.28	
Lifetime due to beamstrahlung (hour)	1.0			
Lifetime (hour)	0.67 (40 min)	2	4	
<i>F</i> (hour glass)	0.89	0.94	0.99	
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	2.93	7.31	4.1	

J. Gao, IAS2018

without bootstrapping