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Machine Learning for 
future e+e- colliders



๏ Machine learning is a technique by which an 
algorithm in trained with example to 
accomplish a task 

๏ as opposed of being programmed to do so, 
by specified rules 

๏ Deep Learning is the cutting-edge ML 
technology 

๏ based on “old-school” neural networks + 
augmented computational capabilities (e.g. 
GPUs) and “new” architectures (recurrent 
nets, convolutional nets, autoencoders, …) 

๏ the breakthrough is fast differentiability 
(back-propagation) allowing fast 
optimization 

๏ DL networks are good in learning non-
linear functions: can be a fast shortcut 
to replace heavy processing tasks

What is Machine Learning

 2

Training a Machine Learning 
algorithm consists in minimizing a 

complicated multi-dimensional 
function



Why ML for HEP?



HL-LHC  & ML as a must

๏ Flat budget vs. more needs = current rule-
based reconstruction algorithms will not be 
sustainable 

๏ Adopted solution: more granular and complex 
detectors ! more computing resources needed 
! more problems 

๏ Modern Machine Learning might be the way out
!4

‣ ~200 collisions/event 
‣ ~minute/event processing time(*) 
‣ (at best)Same computing resources as 
today

This is when the R&D has to 
happen

‣ ~40 collisions/event 
‣ ~10 sec/event processing time 
‣ (at best)Same computing resources as 
today

Today

(*)With nowadays software development 

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



๏ Machine Learning can act as a short-cut to reduce CPU needs 
to accomplish computational tasks: 

๏ express the answer of a traditional algorithm as a function 
learned by examples 

๏ ML deployment is happening at any level: L1, HLT, 
reconstruction, Monte Carlo generation & analysis

 5

High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz

HL-LHC  & ML as a must



๏ A-priori, there is real need to go 
in this direction for e+e- 
colliders 

๏ traditional rule-based algorithms 
should scale up easily 

๏ On the other hand, this is where 
HEP is going (pushed by LHC needs, 
but not only) 

๏ Moreover, there might be a 
performance gain ~ for free with 
these techniques 

๏ See the successful story with 
neutrinos

Why ML for Future e+e-?
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Example: PID for ν experiments 
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gain w.r.t. standard approach: 
equivalent to 30% bigger mass of 

detector 

๏ Many HEP detectors 
(particularly underground) 
more and more structured as 
regular arrays of sensors 

๏ Modern computer-vision 
techniques work with images as 
arrays of pixel sensor (in 1D, 
2D, and 3D) 

๏ These techniques were applied 
by Noνa on electron and muon 
ID  

๏ Impressive gain over 
traditional techniques 
(comparable to +30% detector 
== $$$ saved)



๏ The main breakthrough of Deep Leaning is the capability of 
processing directly raw data 

๏ Special architectures read the raw information (e.g., images) and 
convert them into “smart variables” (high-level features) to 
accomplish the task 

๏ Typical example: convolutional neural networks for image processing 
& computing vision

Which computing-vision technique?
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Faster Particle Reconstruction 
With Computing Vision



๏ Future detectors will 
be 3D arrays of 
sensors with regular 
geometry 

๏ Ideal configuration 
to apply 
Convolutional Neural 
Network 

๏ speed up 
reconstruction at 
similar performances 

๏ and possibly improve 
performances

Particle reconstruction as image detection
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are

See contribution to NIPS workshop
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14Modern Deep NN’s for Classification

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Subsequent 
developments:

de Oliviera et al. 1511.05190

G. Kasieczka et al. 1701.08784 (top-tagging)

J. Barnard et al. 1609.00607 (W-tagging)
P. Komiske et al. 1612.01551 (q/g-tagging)

P. Baldi et al. 1603.09349 (W-tagging)

Convolved Feature Layers

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ We tried particle ID on a sample of 
simulated events 

๏ one particle/event (e, γ, π0, π) 

๏ Different event representations 

๏ high-level features related to event 
shape (moments of X,Y, and Z 
projections, etc) 

๏ raw data (energy recorded in each 
cell) 

๏ Pre-filtered pion events to select the 
nasty ones and make the problem harder

Proof of Principle: Particle ID

 11
See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ Correctly reconstruct 
energy 

๏ ECAL performances better 
than HCAL (as expected) 

๏ π0 resolution ~ √2 γ 
resolution (as expected) 

๏ used only RAW data as 
inputs 

‣ Processing time reduced 
by <msec

Proof of Principle: Energy Regression
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FIG. 3. Test performed on photons, electrons, neu-

tral and charged pions, comparing the predicted en-

ergy with its true value for each type of particle.

were sorted and divided into ten bins, each one
having an energy interval of 50 GeV, in order
to evaluate the influence of the true energy on
the tested model. In Fig. 5, the absolute means
of the energy di↵erence is proportional to the
true energy value; according to this analsis, the
best performances seem to be between 10 and
200 GeV. In Fig. 6, the relative mean of the
energy di↵erence is approximately constant for
di↵erent energy intervals in the normal datasets
(photons, electrons and neutral pions). In this
analysis, the lowest energy bin (10 to 50 GeV)
has the worst performance, whereas in all the
others the relative means are slightly varying
around 0. In Fig. 7, we notice that the stan-
dard deviations are approximately linearly de-
pendent on the energy value. The model perfor-
mance is good in the normal datasets, since the
standard deviation varies between 0 and 5 GeV.
In Fig. 8, the calorimeter resolution was plot-
ted according to the relative standard deviation
values obtained from the test in each particle
dataset, and in all cases it satisfied the general

FIG. 4. Test performed on photons, electrons, neu-

tral and charged pions, comparing the di↵erence

between the true energy and the predicted energy,

relative to the true energy value, for each type of

particle.

expression �(�E)
Etrue

= ap
Etrue

+ b+ c
Etrue

.

IV. CONCLUSION

We train a DNN model to solve a regression
problem in the LCD, in which the inputs are
the raw data from highly-granular calorimeters.
We train the model on four di↵erent datasets,
achieving good performance for photons, elec-
trons, and neutral pions, having the mean of the
di↵erence between true and predicted values ap-
proximating to zero by a factor of 10�1. In order
to train the dataset containing charged pions,
it is necessary to select the data that presented
a correlation between the true energy and the
actual shower deposits in the calorimeter. The
training is limited to such limited filtering of the
data, and as a result, the test has a worse per-
formance when compared to the other datasets.
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80 HDF5 files for each particle, totalizing 80
000 events for each dataset. After preprocess-
ing, data is archived using Numpy arrays.

The neural networks are built and studied
using the highly modular Keras [7] 1.0.8 deep
learning libraries running on top of TensorFlow
[8]. All code is written in Python 2.7. The
training and testing of neural networks have
been performed on Caltechs Culture Plate. It
has eight available NVIDIA GeForce GTX 1080
graphical processing units (GPU).

Convolutional Neural Networks (CNNs) [9]
are in general well-suited for image recogni-
tion problems. We use a Convolutional 3D
layer, followed by a MaxPooling3D layer, and a
fully-connected layer at the end of the CNN. A
branched topology is used to input both ECAL
and HCAL data into the neural network, since
they have di↵erent dimensions. The illustra-
tion of the model topology is found in Fig.
2. When applying the Convolution3D in the
ECAL branch, we use a kernel size of 3, and
stride dimensions of 4 x 4 x 4; for the HCAL
branch, the kernel size is 10, and the stride di-
mensions are 2 x 2 x 6, which are proportional
to the input dimensions. The other parameters
were set to default.

The model uses a training set of 40 000
events, a validation set of 10 000 events, and
a test set of 30 000 events. Events are fed into
training in batches of 100 events using an event
generator [10]. The training used the adam
optimizer [11] with default parameters, mean-
squared error (MSE) as the loss function, and a
linear activation function. Early stopping was
performed when training failed to reduce the
validation loss for more than ten epochs.

III. RESULTS

Fig. 3 evaluates the performance of the model
in the testing sets fot photons, electrons, neutral
pions, and charged pions. The distributions ap-
proximate to identity functions in all the cases.
The data is more scattered in the charged pi-
ons plot due to a problem in the dataset, as
explained in Appendix B, but the high density

FIG. 2. Deep Neural Network topology. ECAL

(with dimensions 25 x 25 x 25) and HCAL (with

dimensions 5 x 5 x 60) inputs are processed in di↵er-

ent branches, where each one receives a Convolution

3D layer according to its dimensions, followed by a

MaxPooling 3D layer. The branches are merged af-

ter being flattened, then dense layers are applied to

converge the output to the predicted energy value.

of points along the identity function shows that
the performance is reasonable enough.

When taking the di↵erence between true and
predicted energy, it is relevant to normalize
the such di↵erence, relative to the true energy
value, as detailed in Appendix C. Fig. 4 shows
the distribution of the relative energy di↵erence
Etrue�Epred

Etrue
for tests on the photons, electrons,

charged and neutral pions datasets. For pho-
tons, the mean is (�3.09± 0.05)10�1 %, with a
standard deviation of 2.64 %. For electrons, the
mean is (2.86 ± 0.04)10�1 %, with a standard
deviation of 2.43 %. For neutral pions, the mean
is (0.66 ± 0.07)10�1 %, with a standard devia-
tion of 3.81 %. For charged pions, the mean is
(�6.21± 0.04) %, with a standard deviation of
19.08 %.

From Fig. 5 to 8, the true and prediction data

5

F
I
G
.
8
.

C
a
lo
r
im

e
t
e
r
r
e
s
o
lu
t
io
n

b
a
s
e
d

o
n

t
h
e
e
n
-

e
r
g
y

r
e
g
r
e
s
s
io
n

t
e
s
t
p
e
r
fo
r
m
e
d

o
n

p
h
o
t
o
n
s
,
e
le
c
-

t
r
o
n
s
,
n
e
u
t
r
a
l
a
n
d
c
h
a
r
g
e
d
p
io
n
s
.

V
.

A
C
K
N
O
W

L
E
D
G
E
M

E
N
T
S

I
am

in
fi
n
itely

gratefu
l
for

th
e
op

p
ortu

n
ity

P
rof.

M
aria

S
p
irop

u
lu

p
rovid

ed
m
e
to

p
u
r-

su
e
th
is

research
in

h
er

grou
p
.

I
can

n
ot

say
en

ou
gh

ofh
er

in
fl
u
en

ce,in
sp
iration

,an
d
en

cou
r-

agem
ent

in
m
y
scientifi

c
career.

F
u
rth

erm
ore,

th
is

p
ro
ject

w
as

su
ccessfu

l
th
an

ks
to

h
er

h
ard

-
w
are

contrib
u
tion

.
M
au

rizio
P
ierin

i
d
ed

icated
a
lot

of
h
is
tim

e
for

ou
r
d
iscu

ssion
s,
w
h
ich

w
ere

n
ot

on
ly

very
con

stru
ctive

to
th
e
p
ro
ject

d
e-

velop
m
ent,

b
u
t
also

gave
m
e
a
b
road

er
id
ea

of
th
is
p
ro
jects

im
p
act

in
th
e
H
igh

E
n
ergy

P
hysics

com
m
u
n
ity;

I
am

th
an

kfu
l
for

h
is
b
rilliant

id
eas

an
d
ad

vice.
Jean

-R
och

V
lim

ant
is
a
great

in
sp
i-

ration
for

m
e
as

a
d
ata

scientist,
an

d
th
is

w
ork

w
ou

ld
n
ot

h
ave

su
cceed

ed
w
ith

ou
t
h
im

,
th
an

ks
to

h
is

attentiven
ess

an
d

su
p
p
ort

of
m
y

w
ork,

h
elp

in
g
m
e
to

tackle
th
e
sim

p
lest

to
th
e
h
ard

est
p
rob

lem
s.

I
ap

p
reciate

th
e
coop

eration
of

D
an

iel
W
eit-

ecam
p
in

u
sin

g
h
is

d
ata

gen
erator,

su
p
p
ort

u
s-

in
g
K
eras,

an
d
com

m
entin

g
m
y
w
ork.

I
w
ou

ld
like

to
th
an

k
P
rof.

H
arvey

N
ew

m
an

,
Josh

B
en

-
d
avid

,
an

d
D
u
stin

A
n
d
erson

for
d
iscu

ssion
s
th
at

p
rovid

ed
m
e
w
ith

d
eep

er
u
n
d
erstan

d
in
g
of

th
e

p
hysics

b
eh

in
d
th
e
p
ro
ject.

M
y
th
an

ks
to

ou
r

collab
orators

A
m
ir

F
ab

in
,
B
en

jam
in

H
oob

er-
m
an

,
M
att

Z
h
an

g,
an

d
W
ei

W
ei

for
in
sightfu

l
d
iscu

ssion
s
on

th
e
L
C
D

p
ro
ject.

F
in
ally,

I
w
ou

ld
like

to
th
an

k
all

th
e
m
em

-
b
ers

of
th
e
grou

p
for

th
e
great

su
m
m
er

I
h
ad

.
A
d
i
B
orn

h
eim

,
Jay

L
aw

h
orn

,
an

d
N
an

L
u
for

th
e
h
elp

w
ith

logistics
an

d
ad

m
in
istrative

is-
su
es;

D
an

iel
G
aw

erc
an

d
G
illian

K
op

p
for

b
ein

g
great

fl
atm

ates
an

d
sh
arin

g
th
eir

kn
ow

led
ge

in
p
article

p
hysics

w
ith

m
e.

A
d
d
ition

al
th
an

ks
to

P
rofessor

S
ergio

N
ovaes,

T
h
iago

T
om

ei,
an

d
C
e-

sar
A
u
gu

sto
for

lesson
s
on

jets
an

d
great

stories
ab

ou
t
th
e
C
E
R
N
.

5

FIG. 8. Calorimeter resolution based on the en-

ergy regression test performed on photons, elec-

trons, neutral and charged pions.
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80 HDF5 files for each particle, totalizing 80
000 events for each dataset. After preprocess-
ing, data is archived using Numpy arrays.

The neural networks are built and studied
using the highly modular Keras [7] 1.0.8 deep
learning libraries running on top of TensorFlow
[8]. All code is written in Python 2.7. The
training and testing of neural networks have
been performed on Caltechs Culture Plate. It
has eight available NVIDIA GeForce GTX 1080
graphical processing units (GPU).

Convolutional Neural Networks (CNNs) [9]
are in general well-suited for image recogni-
tion problems. We use a Convolutional 3D
layer, followed by a MaxPooling3D layer, and a
fully-connected layer at the end of the CNN. A
branched topology is used to input both ECAL
and HCAL data into the neural network, since
they have di↵erent dimensions. The illustra-
tion of the model topology is found in Fig.
2. When applying the Convolution3D in the
ECAL branch, we use a kernel size of 3, and
stride dimensions of 4 x 4 x 4; for the HCAL
branch, the kernel size is 10, and the stride di-
mensions are 2 x 2 x 6, which are proportional
to the input dimensions. The other parameters
were set to default.

The model uses a training set of 40 000
events, a validation set of 10 000 events, and
a test set of 30 000 events. Events are fed into
training in batches of 100 events using an event
generator [10]. The training used the adam
optimizer [11] with default parameters, mean-
squared error (MSE) as the loss function, and a
linear activation function. Early stopping was
performed when training failed to reduce the
validation loss for more than ten epochs.

III. RESULTS

Fig. 3 evaluates the performance of the model
in the testing sets fot photons, electrons, neutral
pions, and charged pions. The distributions ap-
proximate to identity functions in all the cases.
The data is more scattered in the charged pi-
ons plot due to a problem in the dataset, as
explained in Appendix B, but the high density

FIG. 2. Deep Neural Network topology. ECAL

(with dimensions 25 x 25 x 25) and HCAL (with

dimensions 5 x 5 x 60) inputs are processed in di↵er-

ent branches, where each one receives a Convolution

3D layer according to its dimensions, followed by a

MaxPooling 3D layer. The branches are merged af-

ter being flattened, then dense layers are applied to

converge the output to the predicted energy value.

of points along the identity function shows that
the performance is reasonable enough.

When taking the di↵erence between true and
predicted energy, it is relevant to normalize
the such di↵erence, relative to the true energy
value, as detailed in Appendix C. Fig. 4 shows
the distribution of the relative energy di↵erence
Etrue�Epred

Etrue
for tests on the photons, electrons,

charged and neutral pions datasets. For pho-
tons, the mean is (�3.09± 0.05)10�1 %, with a
standard deviation of 2.64 %. For electrons, the
mean is (2.86 ± 0.04)10�1 %, with a standard
deviation of 2.43 %. For neutral pions, the mean
is (0.66 ± 0.07)10�1 %, with a standard devia-
tion of 3.81 %. For charged pions, the mean is
(�6.21± 0.04) %, with a standard deviation of
19.08 %.

From Fig. 5 to 8, the true and prediction data

๏ Correctly reconstruct 
energy 

๏ ECAL performances better 
than HCAL (as expected) 

๏ π0 resolution ~ √2 γ 
resolution (as expected) 

๏ used only RAW data as 
inputs 

‣ Processing time reduced 
by <msec

Proof of Principle: Energy Regression
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3

FIG. 3. Test performed on photons, electrons, neu-

tral and charged pions, comparing the predicted en-

ergy with its true value for each type of particle.

were sorted and divided into ten bins, each one
having an energy interval of 50 GeV, in order
to evaluate the influence of the true energy on
the tested model. In Fig. 5, the absolute means
of the energy di↵erence is proportional to the
true energy value; according to this analsis, the
best performances seem to be between 10 and
200 GeV. In Fig. 6, the relative mean of the
energy di↵erence is approximately constant for
di↵erent energy intervals in the normal datasets
(photons, electrons and neutral pions). In this
analysis, the lowest energy bin (10 to 50 GeV)
has the worst performance, whereas in all the
others the relative means are slightly varying
around 0. In Fig. 7, we notice that the stan-
dard deviations are approximately linearly de-
pendent on the energy value. The model perfor-
mance is good in the normal datasets, since the
standard deviation varies between 0 and 5 GeV.
In Fig. 8, the calorimeter resolution was plot-
ted according to the relative standard deviation
values obtained from the test in each particle
dataset, and in all cases it satisfied the general

FIG. 4. Test performed on photons, electrons, neu-

tral and charged pions, comparing the di↵erence

between the true energy and the predicted energy,

relative to the true energy value, for each type of

particle.

expression �(�E)
Etrue

= ap
Etrue

+ b+ c
Etrue

.

IV. CONCLUSION

We train a DNN model to solve a regression
problem in the LCD, in which the inputs are
the raw data from highly-granular calorimeters.
We train the model on four di↵erent datasets,
achieving good performance for photons, elec-
trons, and neutral pions, having the mean of the
di↵erence between true and predicted values ap-
proximating to zero by a factor of 10�1. In order
to train the dataset containing charged pions,
it is necessary to select the data that presented
a correlation between the true energy and the
actual shower deposits in the calorimeter. The
training is limited to such limited filtering of the
data, and as a result, the test has a worse per-
formance when compared to the other datasets.
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See contribution to NIPS workshop

DELPHES ILC resolution 
ML approach from RAW data     

Not yet as good as traditional algorithms 
Still working on improving performances

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


Generating large datasets 
with small resources



Generative Models

 15

• Neural Networks can be 
trained to generate events 
similar to those they are 
trained on

• Two main approaches these 
days

• Variational Autoencoder: 
train the encoder, sample 
from the latent distribution 
& decode the sampled point

• Generative Adversarial 
networks: train a generator 
by fooling a classifier

https://arxiv.org/abs/1511.06434v2?__hstc=36392319.4ec9da873182c5b0427a0d36b934b567.1481240248017.1481240248017.1481240248017.1&__hssc=36392319.1.1481240248017&__hsfp=1005577320


Generative	Adversarial	Networks

๏ Two networks trained 
simultaneously 

๏ Generator: from noise to an 
event (e.g. image) 

๏ Discriminator: distinguish real 
events from those created by 
generator 

๏ Loss function given by 
discriminator 

๏ Parameter space = SUM of weights 
of the two networks 

Adversarial Training

 16

Benchmark Models
• DCGAN — convolutional layers in both G and D 
• FCGAN — fully-connected layers in both G and D 
• HYBRIDGAN — a combination of the two:

DCGAN

FCGAN

DCGAN
FCGAN

Generator

Discriminator

avgz

real images

y

yaux

arXiv:1701.05927

https://arxiv.org/pdf/1701.05927.pdf


Particle shower generation

 17

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters as a 
replacement of GEANT

Some images

13

Preliminary

¤ Slice energy spectrum

¤ Start with photons & electrons

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
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. Geant4
GAN generated

Geant4
GAN generated

Preliminary

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
.u

. Geant4
GAN generated

Geant4
GAN generated

Preliminary

See contribution to NIPS workshop

see also de Olivera, Paganini, and Nachman 
https://arxiv.org/abs/1712.10321

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1712.10321


Generating full jets

 18

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters 
as a replacement of GEANT

where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –

Figure 2: In the simplest (i.e., all-square) case, a convolutional layer consists of N filters of size F⇥F
sliding across an L ⇥ L image with stride S. For a valid convolution, the dimensions of the output
volume will be W ⇥W ⇥N , where W = (L� F )/S + 1.

Figure 3: A locally connected layer consists of N unique filters applied to each individual patch of
the image. Each group of N filters is specifically learned for one patch, and no filter is slid across
the entire image. The diagram shows the edge case in which the stride S is equal to the filter size F ,
but in general patches would partially overlap. A convolution, as described above, is simply a locally
connected layer with a weight sharing constraint.

distribution. Both batch normalization [37] and label flipping [4, 35] were also essential in obtaining
stability in light of the large dynamic range.

In summary, a Location Aware Generative Adversarial Network (LAGAN) is a set of guidelines
for learning GANs designed specifically for applications in a sparse regime, when location within the

– 5 –

de Olivera, Paganini, and Nachman 
https://arxiv.org/pdf/1701.05927.pdf

https://arxiv.org/pdf/1701.05927.pdf


Analysis-specific dataset generation

 19

• In view of large statistics needs, 
one can use generative models 
as statistics augmentation tools

• For instance, could generate 
expert-feature quantities used 
in an analysis (muon four-
momenta, jet momenta, etc.)

• Like sampling from histogram 
with two main advantages

• no need to bin

• generalizes to multi-
dimensional problems

GEN

SIM/DIGI

RECO

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection

Fast 
Simulation

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



๏ Dimuon events at LHC 

๏ Typical analysis would use a few handful of quantities (muon 
momenta, isolation, jet pTs, etc) 

๏ Can learn the N-dim distribution of these quantities with GAN setup 

๏ Can use the generator network as a fastsim tool

An example

 20

GEN DATA

Noise

Generator N-Dim learned 
distribution

RECO DATA

Discriminator

+

Real RECO DATA 
of “FAKES”?

GEAN+…

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



๏ Dimuon events at LHC 

๏ Typical analysis would use a few handful of quantities (muon 
momenta, isolation, jet pTs, etc) 

๏ Can learn the N-dim distribution of these quantities with GAN setup 

๏ Can use the generator network as a fastsim tool

An example

 21

Dilepton mass (not given as input quantity) is learned 
from the four-momenta

PRELIMINARY

PRELIMINARY

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



Analysis-specific dataset generation
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• In view of large statistics needs, 
one can use generative models 
as statistics augmentation tools

• For instance, could generate 
expert-feature quantities used 
in an analysis (muon four-
momenta, jet momenta, etc.)

• Like sampling from histogram 
with two main advantages

• no need to bin

• generalizes to multi-
dimensional problems

GEN

SIM/DIGI

RECO

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection

Statistics 
Augmentation

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



Analysis-specific dataset generation
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GEN

SIM/DIGI

RECO

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection

Statistics 
Augmentation

PRELIMINARY

PRELIMINARY

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



Analysis-specific unfolding

 24

• One could invert the process and learn to predict 
the GEN features from the RECO ones

• Formally the same procedure

• Invert the role of the target and the input datasets

GEN

SIM/DIGI

RECO

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection

Unfolding

PRELIMINARY

PRELIMINARY

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



Machine Learning for 
trigger systems



๏ The L1 trigger is a complicated 
environment 

๏ decision to be taken in ~10 μsec 

๏ only access to local portions of 
the detector 

๏ processing on Xilinx FPGA, with 
limited memory resources 

๏ Some ML already running @L1  

๏ CMS has BDT-based regressions 
coded as look-up tables 

๏ Working to facilitate DL solutions 
@L1 with dedicated library

The frontier: bring DL to L1

 26

HLS4ML: CERN/FNAL/MIT collaboration

PROJECT OVERVIEW 14

compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision  

reuse/latency

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

https://hls-fpga-machine-learning.github.io/hls4ml/


๏ An LHC collision 
produces many kinds 
of jets  

๏ Usually, jet tagging 
is resources 
demanding and happens 
late in the game 

๏ We took this as a use 
case for a NN to be 
deployed @L1

The use case: jet tagging

 27

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied



๏ Simple DNN based on 
high-level features 
(jet masses, 
multiplicities, 
energy correlation 
functions)

A jet multiclass classifier

 28

Full model

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax



COMPRESSION 18

There are many schemes for compression 
We do a simplistic, iterative version 

Training with “L1” regularization, up-weight important synapses 
Remove X% of weights and retrain 
Rinse, repeat 

Our case study: 70% network reduction with no performance loss

< total bits, integer bits >

Reaches 32-bit floating 
point performance with 
16-bit fixed point!

Distribution of 
weights in NN

Online deployment: pruning

 29

COMPRESSION 18

There are many schemes for compression 
We do a simplistic, iterative version 

Training with “L1” regularization, up-weight important synapses 
Remove X% of weights and retrain 
Rinse, repeat 

Our case study: 70% network reduction with no performance loss

< total bits, integer bits >

Reaches 32-bit floating 
point performance with 
16-bit fixed point!

Distribution of 
weights in NN

(ENERGY) EFFICIENT NEURAL NETWORKS

Emergent engineering field, efficient implementation of NN architecture 

Compression:  
maintain the same performance while removing low weight synapses and 
neurons (many schemes) 

Quantization: 
32-bit floating point math is overkill 

20-bit, 18-bit, …? fixed point, integers?  binarized NNs?

13

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

For further reading, start here: https://arxiv.org/pdf/1510.00149v5.pdf

๏ Reduced needed resources: 

๏ pruning: removes nodes and connections 
preserving performances  

๏ quantization: limit numerical precisions saving 
bits



Performances

 30

TIMING 23

Behavior of pipeline 
interval controlled well 

by the reuse factor

Additional latency 
introduced by reusing 

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor  
will reduce the DSP usage

NB: FPGA emulator over-estimates resource needs by a factor 
2-4 (tested our emulation vs actual deployment)



๏ Modern Machine Learning is becoming a crucial ingredient to 
HEP, mainly due to the challenges of High-Luminosity LHC 

๏ The clean e+e- environment might not necessarily call for 
advanced ML applications. Nevertheless 

๏ A clear advantage was prove in similar situations 
(neutrinos) 

๏ This is where the field is going. Why not profiting? 

๏ Applications span across many typical HEP workflows 

๏ PID, energy measurement, simulation, DAQ/Trigger 

๏ Work started, and a long way to go to meet very-high precision 
requirements of an intense e+e- collider

Conclusions
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Backup



๏ Offline, reconstructed 
from full particles using 
Particle Flow (accurate 
but slow) 

๏ At L1, low-level objects 
are used 

๏ map of energy deposit 
on calorimeter 

๏ (in the future) local 
tracking (maybe pixel 
only) 

๏ ML could make jet reco at 
trigger faster & better

Faster/better Jet Reco
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Track momentum 
flowing in the same 

cells

8i9

Calorimetric deposit 
in 20x20 dells 

(ΔR=0.5)



๏ With a simple network, 
substantial improvement 
observed (could be pushed 
further, optimizing the 
network architecture) 

๏ Consequences downstream: 

๏ better select the 
100000 events to 
write /sec 

๏ With better input, HLT 
could work even better  

๏ We could recover lost 
territory/gain new 
territory and extend 
our search capability

Faster/better Jet Reco
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RAW resolution: 125% 
CNN resolution: 36% 

Drastically reduces 
promotion of low-pT jets 

to high pT



BDT score of the photon ID
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What we do with ML today
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Centralised task (in online or offline reconstruction) 
Analysis-specific task (by users on local computing 
infrastructures)

๏ Classification:  

๏ identify a particle & reject fakes 

๏ identify signal events & reject background 

๏ Regression: 

๏ Measure energy of a particle 

๏ We typically use BDTs for these task 

๏ moved to Deep Learning for analysis-specific 
tasks 

๏ same will happen for centralised tasks 
(eventually)



Example: ML for Higgs discovery

 36

๏ We were not supposed to discover the Higgs boson as early as 2012 

๏ Given how the machine progressed, we expected discovery by end 2015 /mid 
2016 

๏ We made it earlier thanks (also) to Machine Learning 



HL4ML: FPGA details
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STUDY DETAILS

Xilinx Vivado 2017.2 
Results are slightly different in other versions of Vivado 

e.g. 2016.4 optimization is less performant for Xilinx ultrascale FPGAs 

Clock frequency: 200 MHz 
Latency results can vary (~10%) with different clock choices 

FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104) 
Results are slightly different in other FPGAs  

e.g. Virtex-7 FPGAs are slightly differently optimized 
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