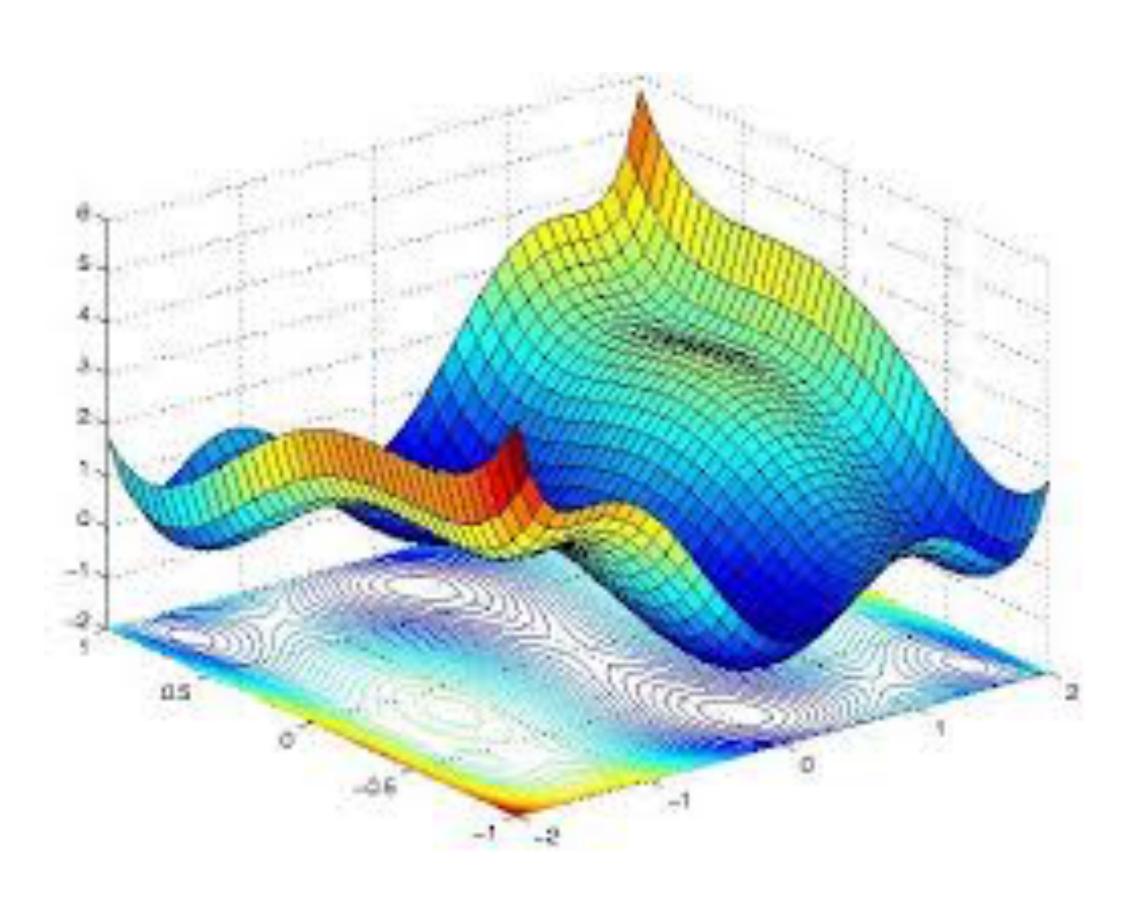
Machine Learning for future e+e- colliders

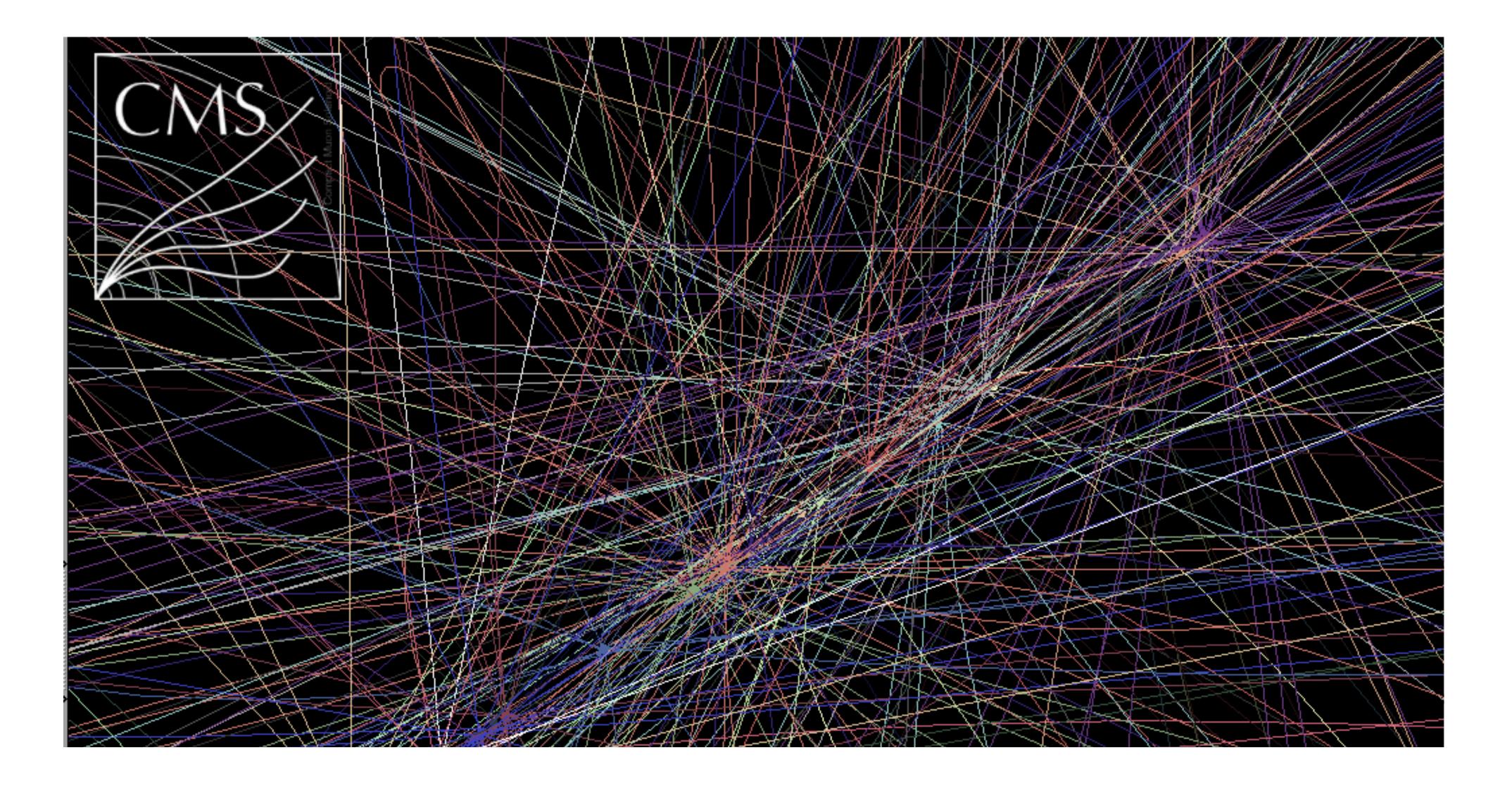
Maurizio Pierini

What is Machine Learning

- Machine learning is a technique by which an algorithm in trained with example to accomplish a task
 - as opposed of being programmed to do so, by specified rules
- Deep Learning is the cutting-edge ML technology
 - based on "old-school" neural networks +
 augmented computational capabilities (e.g.
 GPUs) and "new" architectures (recurrent
 nets, convolutional nets, autoencoders, ...)
 - the breakthrough is fast differentiability (back-propagation) allowing fast optimization
 - DL networks are good in learning nonlinear functions: can be a fast shortcut to replace heavy processing tasks

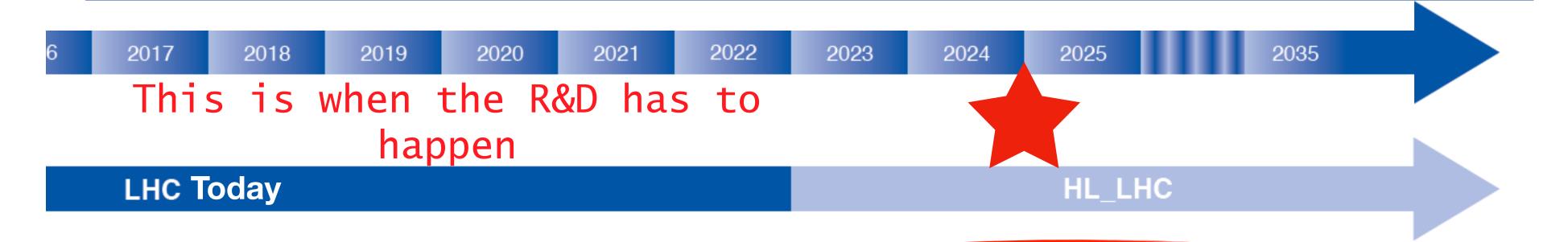


Training a Machine Learning algorithm consists in minimizing a complicated multi-dimensional function

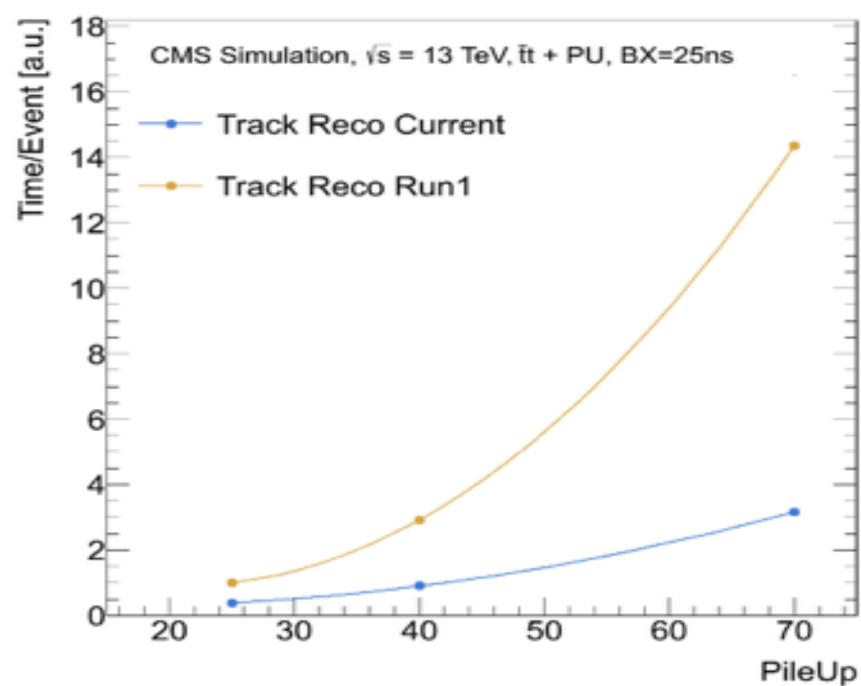


Why ML for HEP?

HL-LHC & ML as a must

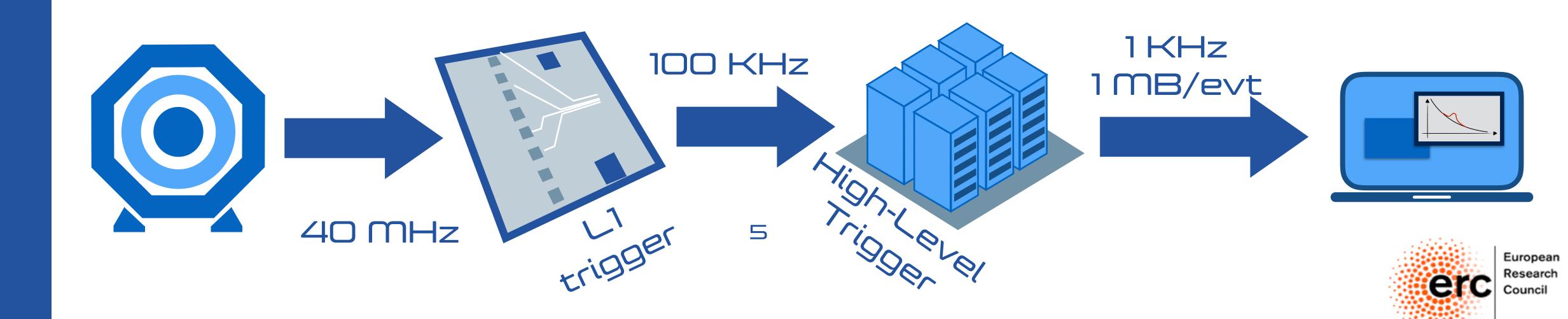


- ▶ ~40 collisions/event
- ▶ ~10 sec/event processing time
- ▶ (at best)Same computing resources as today
- ▶ ~200 collisions/event
- ~minute/event processing time(*)
- (at best)Same computing resources as today
- Flat budget vs. more needs = <u>current rule-</u> <u>based reconstruction algorithms will not be</u> <u>sustainable</u>
- Adopted solution: more granular and complex detectors → more computing resources needed
 → more problems
- Modern Machine Learning might be the way out



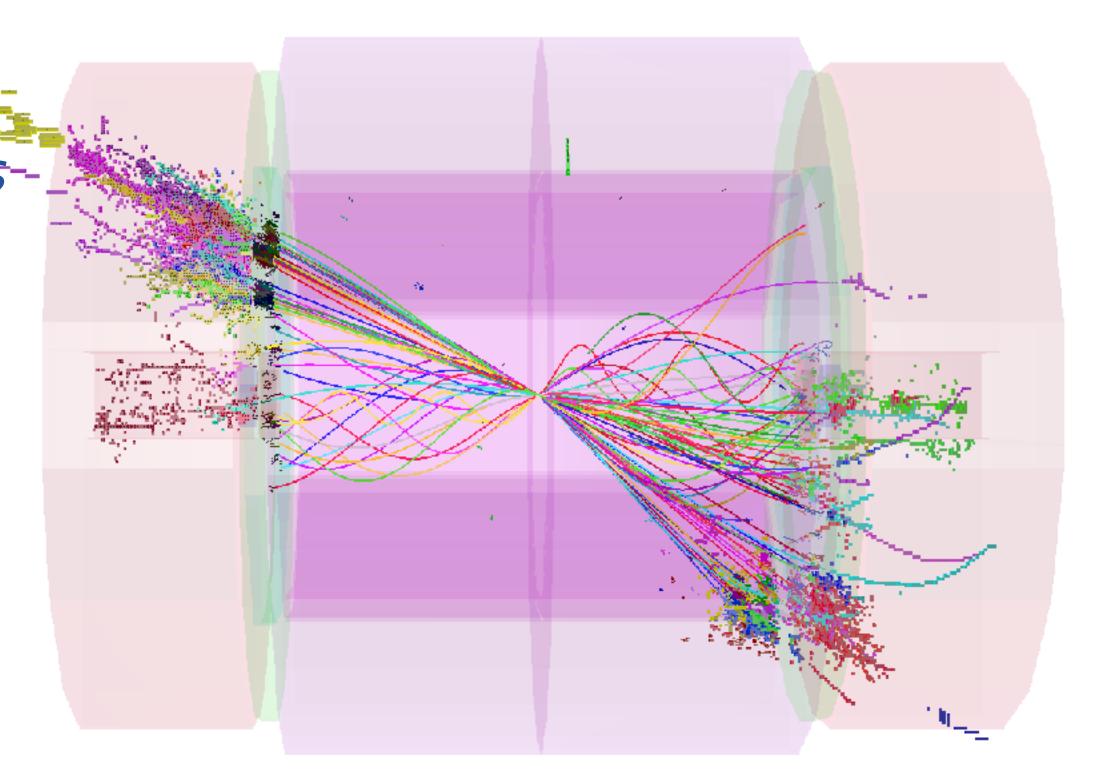
HL-LHC & ML as a must

- Machine Learning can act as a short-cut to reduce CPU needs to accomplish computational tasks:
 - express the answer of a traditional algorithm as a function learned by examples
- ML deployment is happening at any level: L1, HLT, reconstruction, Monte Carlo generation & analysis



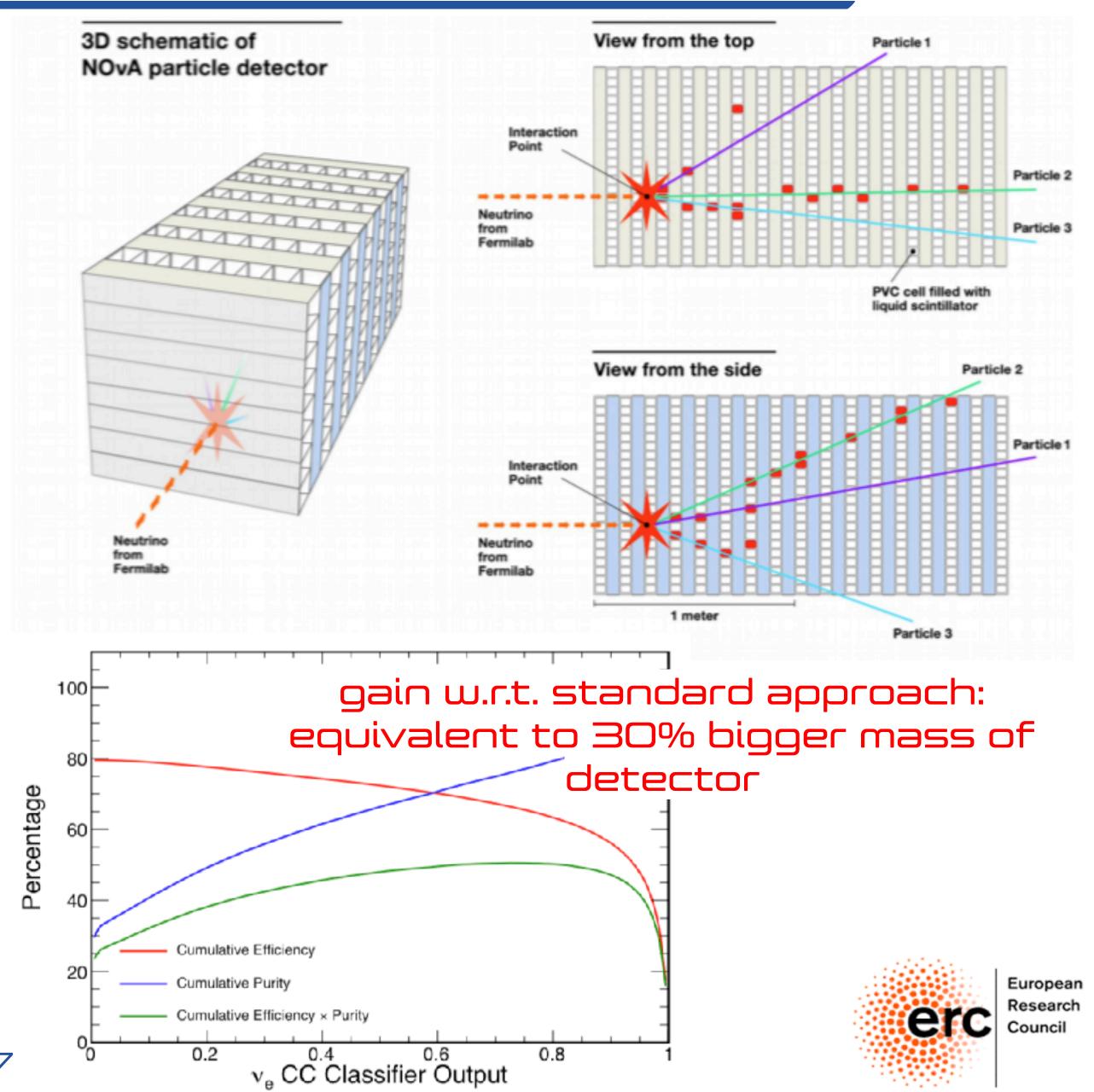
Why ML for Future e+e-?

- A-priori, there is real need to go
 in this direction for e+ecolliders
 --
 - traditional rule-based algorithmsshould scale up easily
- On the other hand, this is where HEP is going (pushed by LHC needs, but not only)
- Moreover, there might be a performance gain ~ for free with these techniques
 - See the successful story with neutrinos



Example: PID for v experiments

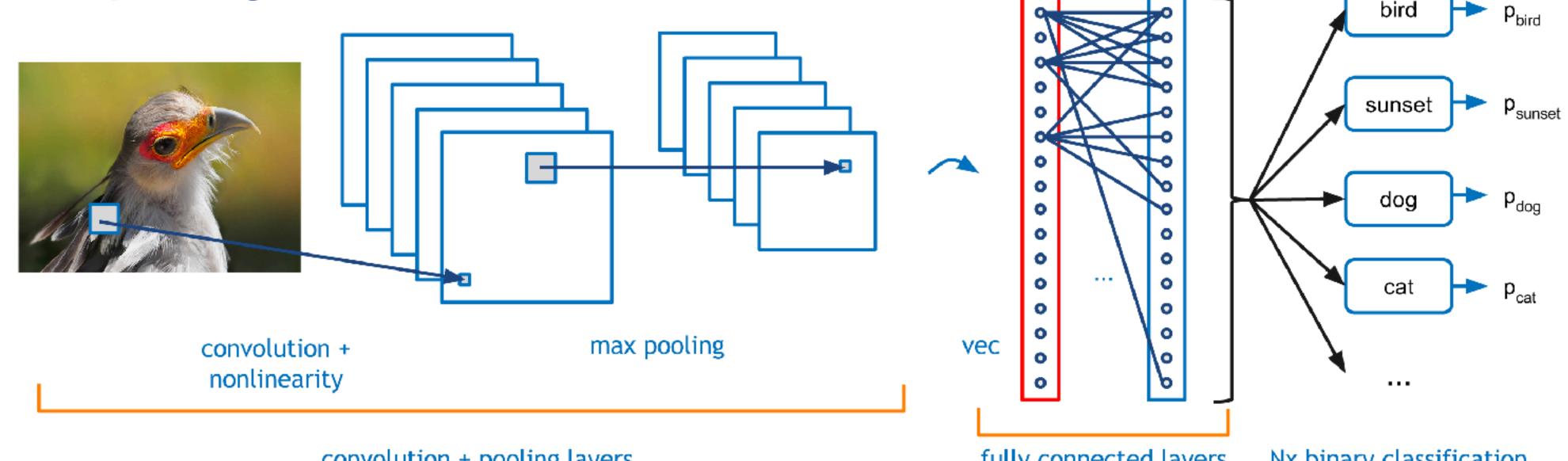
- Many HEP detectors (particularly underground) more and more structured as regular arrays of sensors
- Modern computer-vision techniques work with images as arrays of pixel sensor (in 1D, 2D, and 3D)
- These techniques were applied by Nova on electron and muon TD
- Impressive gain over traditional techniques (comparable to +30% detector == \$\$\$ saved)

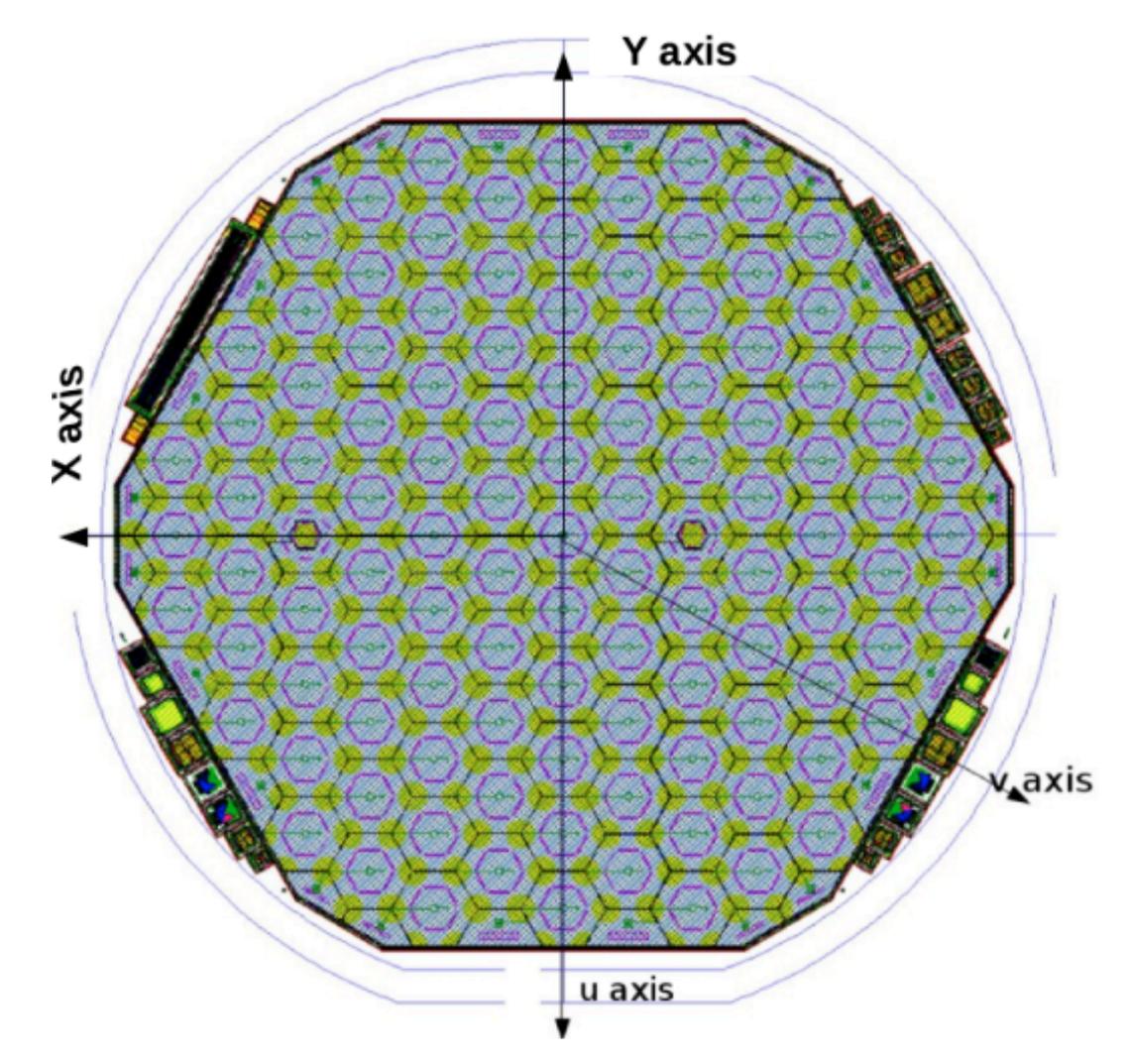


Which computing-vision technique?

- The main breakthrough of Deep Leaning is the capability of processing directly raw data
- Special architectures read the raw information (e.g., images) and convert them into "smart variables" (high-level features) to accomplish the task

• Typical example: convolutional neural networks for image processing & computing vision



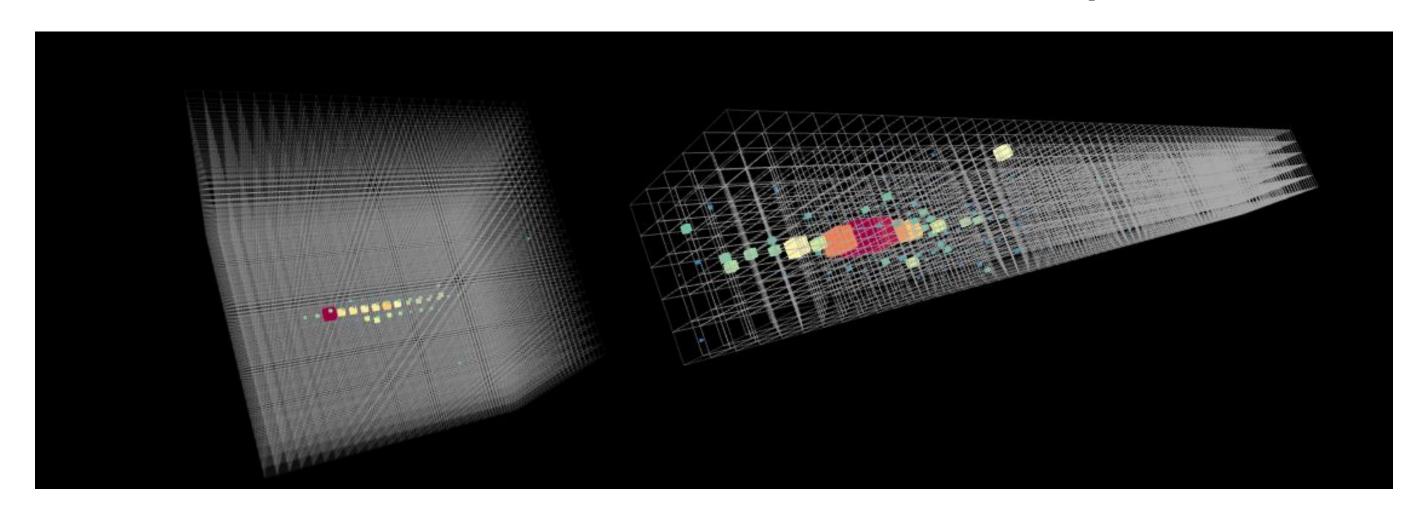


Faster Particle Reconstruction With Computing Vision erc Research Council Vision Research Council Vision Council Vision

Particle reconstruction as image detection

- Future detectors will be 3D arrays of sensors with regular geometry
- Ideal configuration to apply Convolutional Neural Network
 - speed up reconstruction at similar performances
 - and possibly improve performances

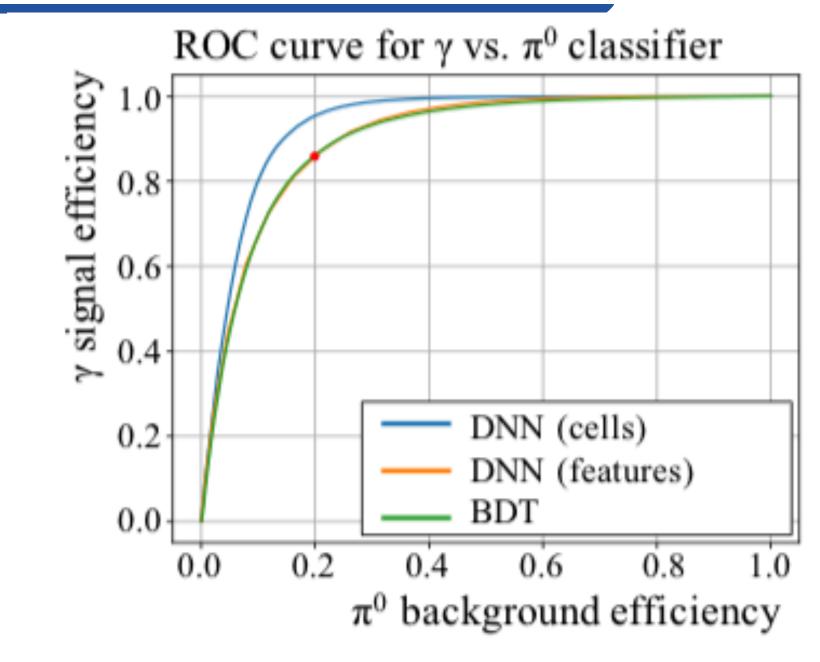
See contribution to NIPS workshop





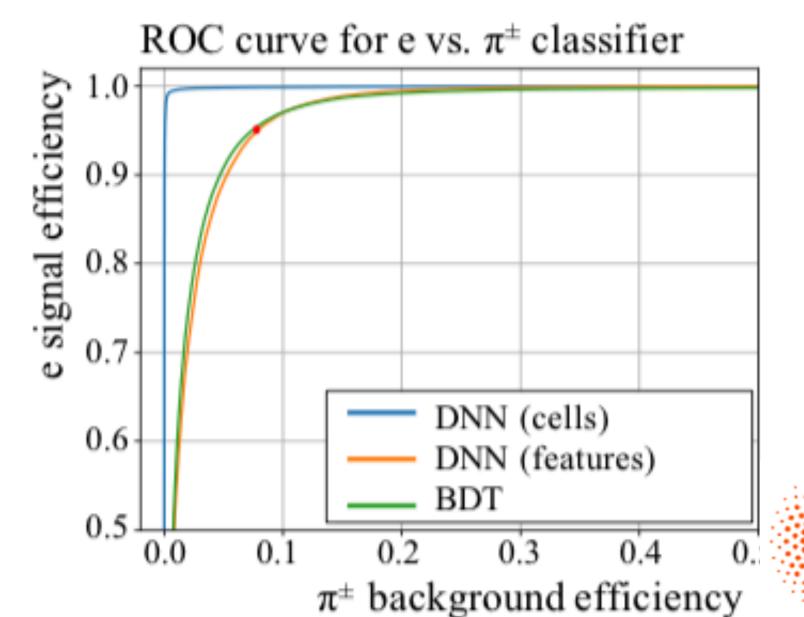
Proof of Principle: Particle ID

- We tried particle ID on a sample of simulated events
 - one particle/event (e, γ , π^0 , π)
- Different event representations
 - high-level features related to event shape (moments of X,Y, and Z projections, etc)
 - raw data (energy recorded in each cell)
- Pre-filtered pion events to select the nasty ones and make the problem harder



European Research

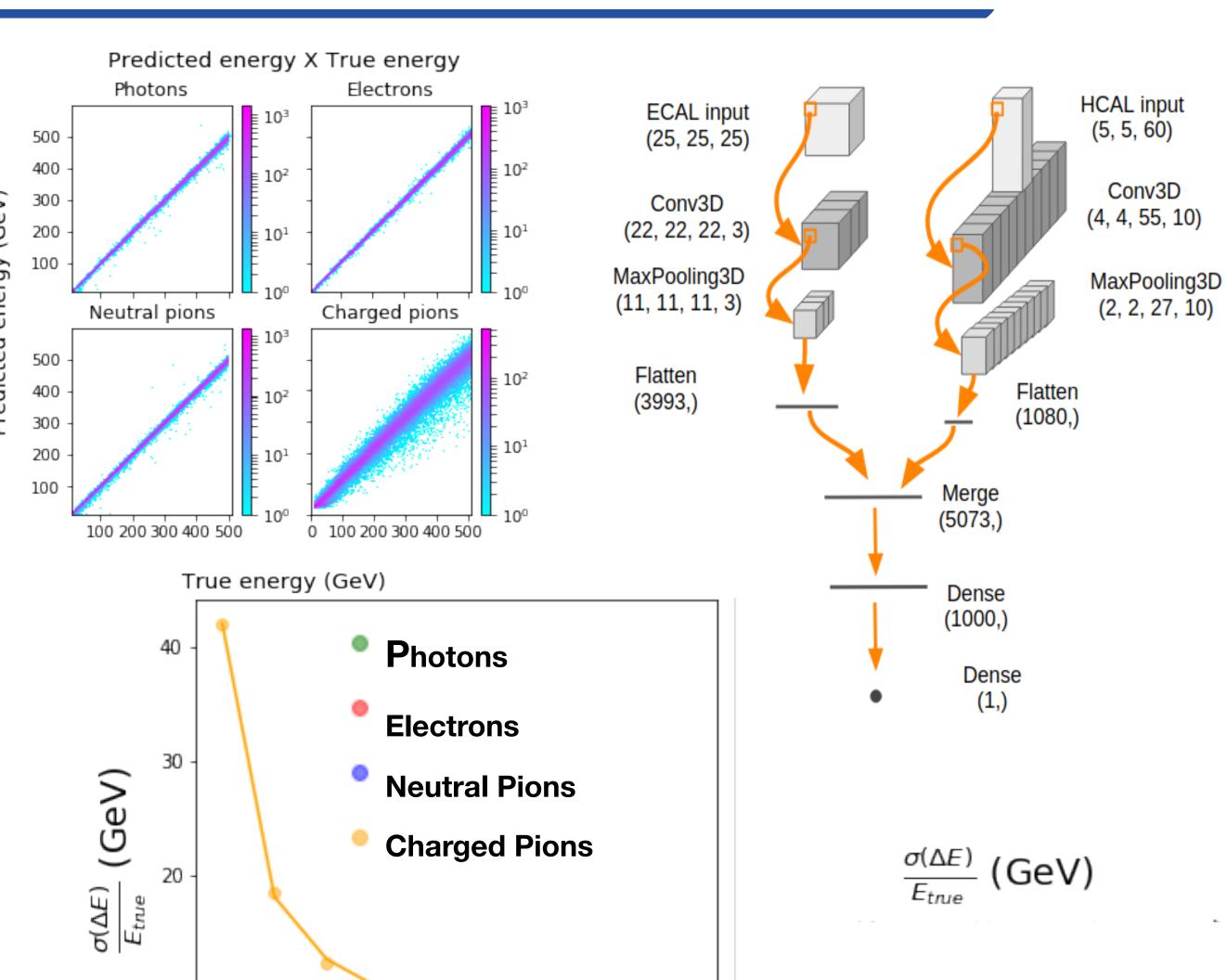
Council



Proof of Principle: Energy Regression

- Correctly reconstruct energy
- ECAL performances better than HCAL (as expected)
- used only RAW data as inputs
- Processing time reduced
 by <msec</pre>

See contribution to NIPS workshop



200

100

12

300

Energy (GeV)

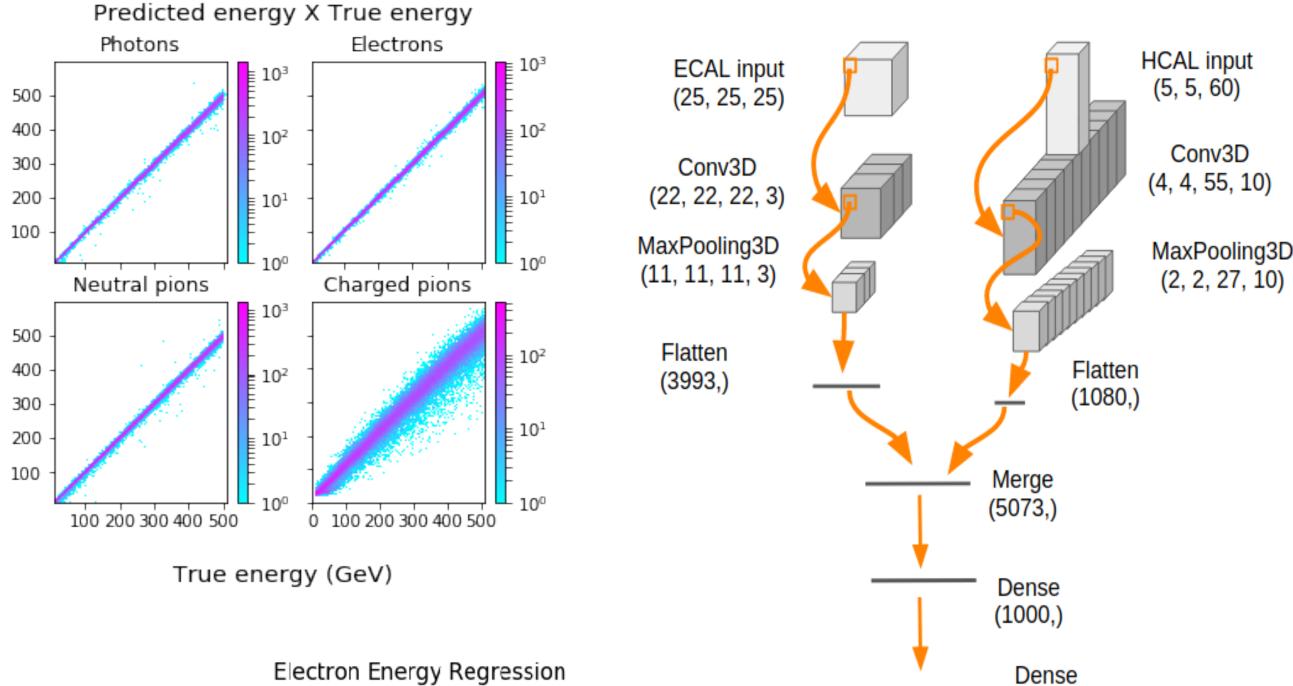
500

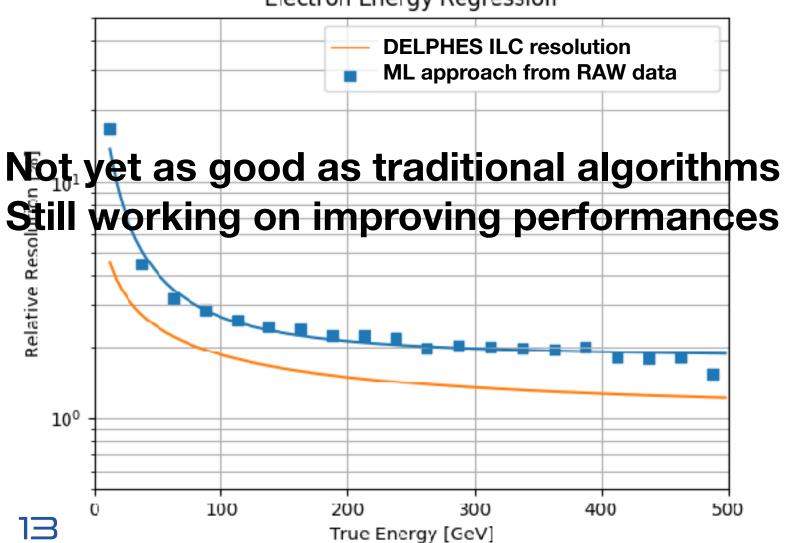
European Research

Proof of Principle: Energy Regression

- Correctly reconstruct energy
- ECAL performances better than HCAL (as expected)
- used only RAW data as inputs
- Processing time reduced
 by <msec</pre>

See contribution to NIPS workshop



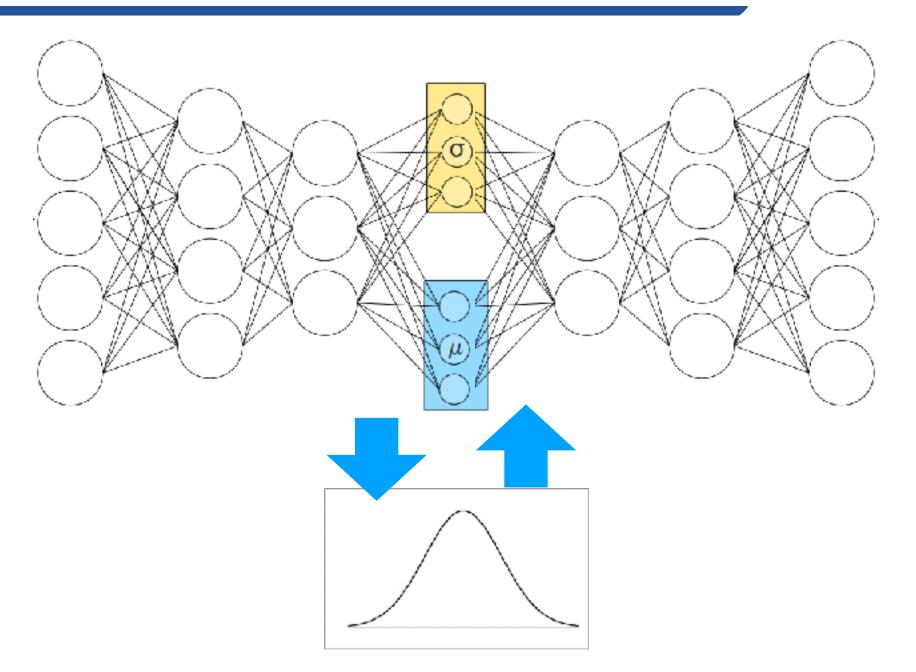


(1,)

Generating large datasets with small resources erc European Research Council

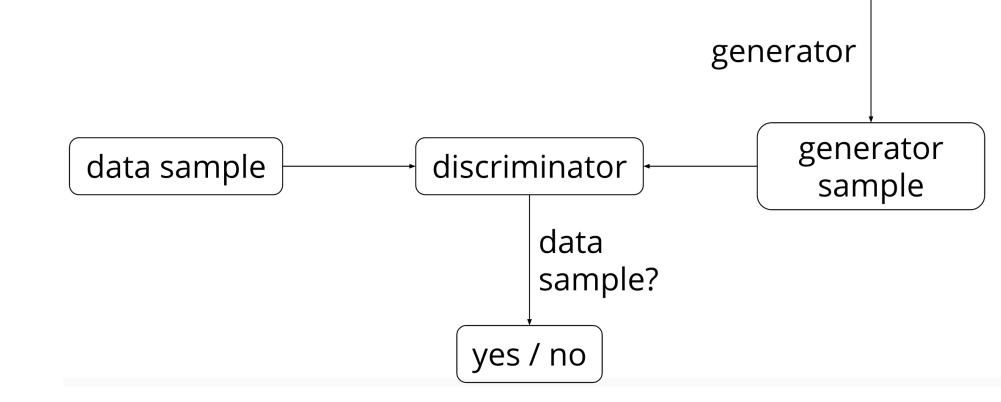
Generative Models

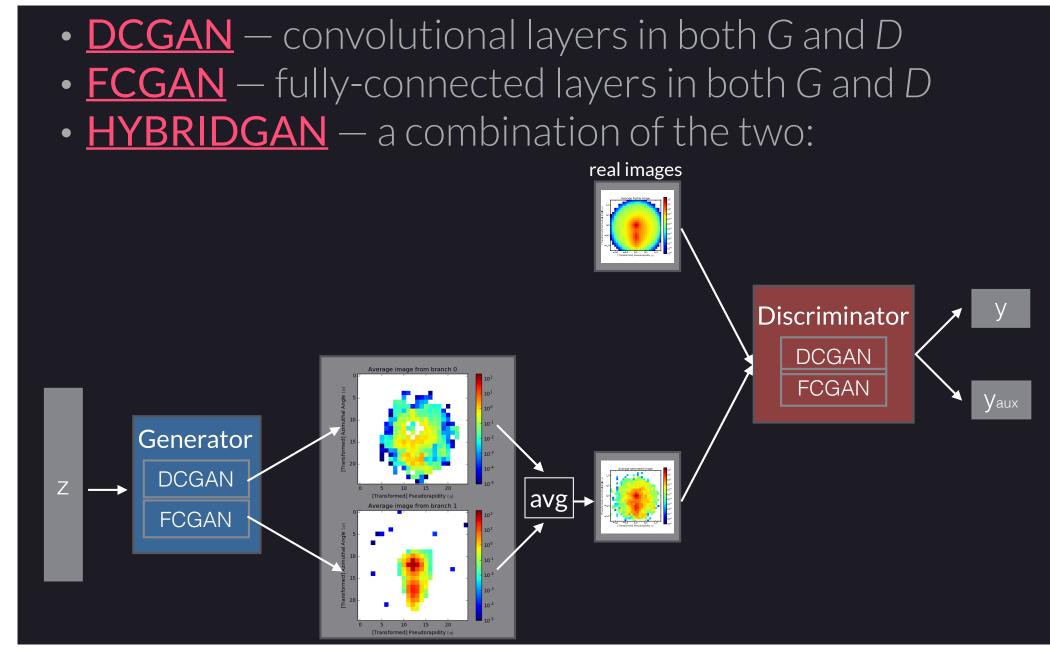
- Neural Networks can be trained to generate events similar to those they are trained on
- Two main approaches these days
 - Variational Autoencoder: train the encoder, sample from the latent distribution
 & decode the sampled point
 - Generative Adversarial networks: train a generator by fooling a classifier



<u>Adversarial Training</u>

- Two networks trained simultaneously
 - Generator: from noise to an event (e.g. image)
 - Discriminator: distinguish real events from those created by generator
- Loss function given by discriminator
- Parameter space = SUM of weights of the two networks





arXiv:1701.05927

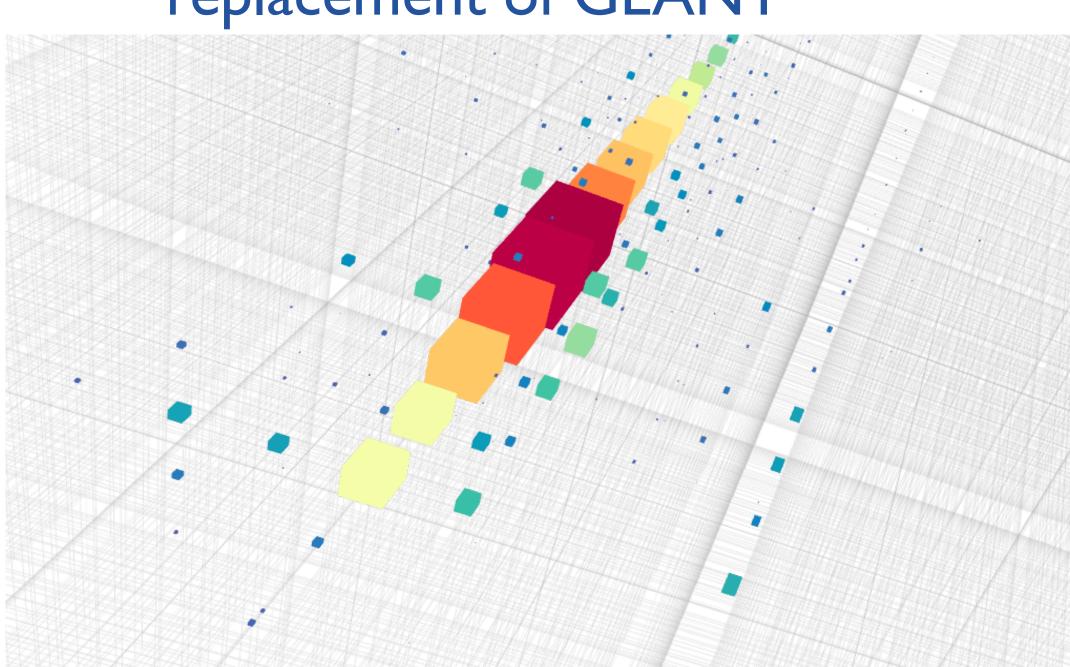
Particle shower generation

See contribution to NIPS workshop

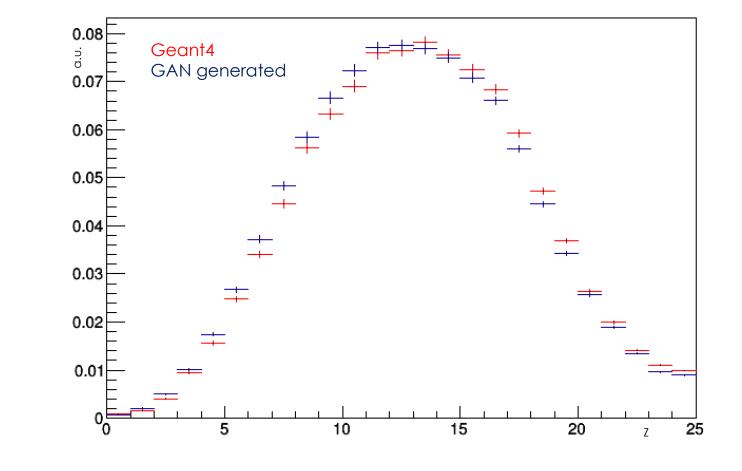
Shower longitudinal section

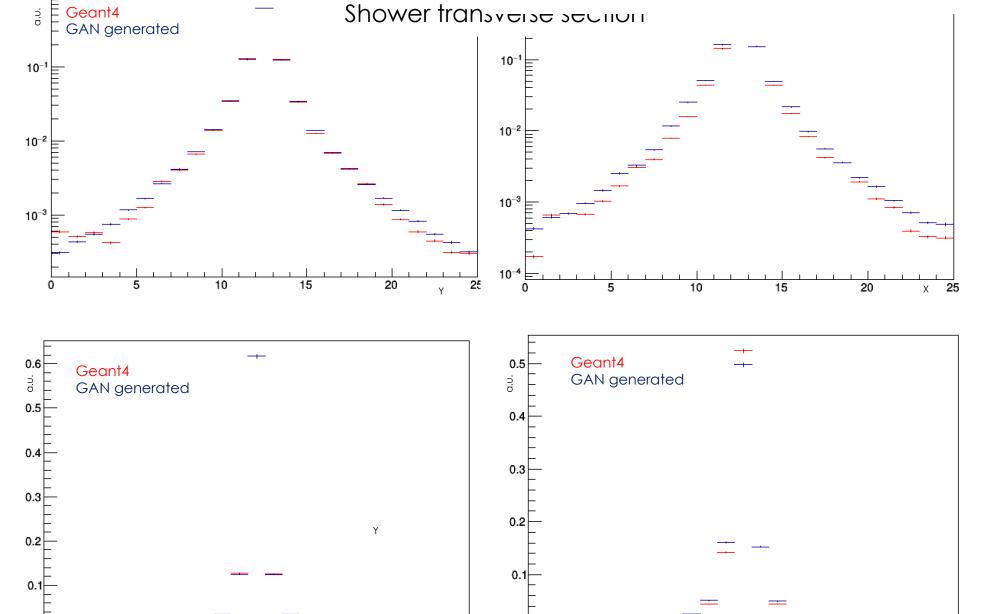
- Start from random noise
- Works very well with images

 Applied to electron showers in digital calorimeters as a replacement of GEANT



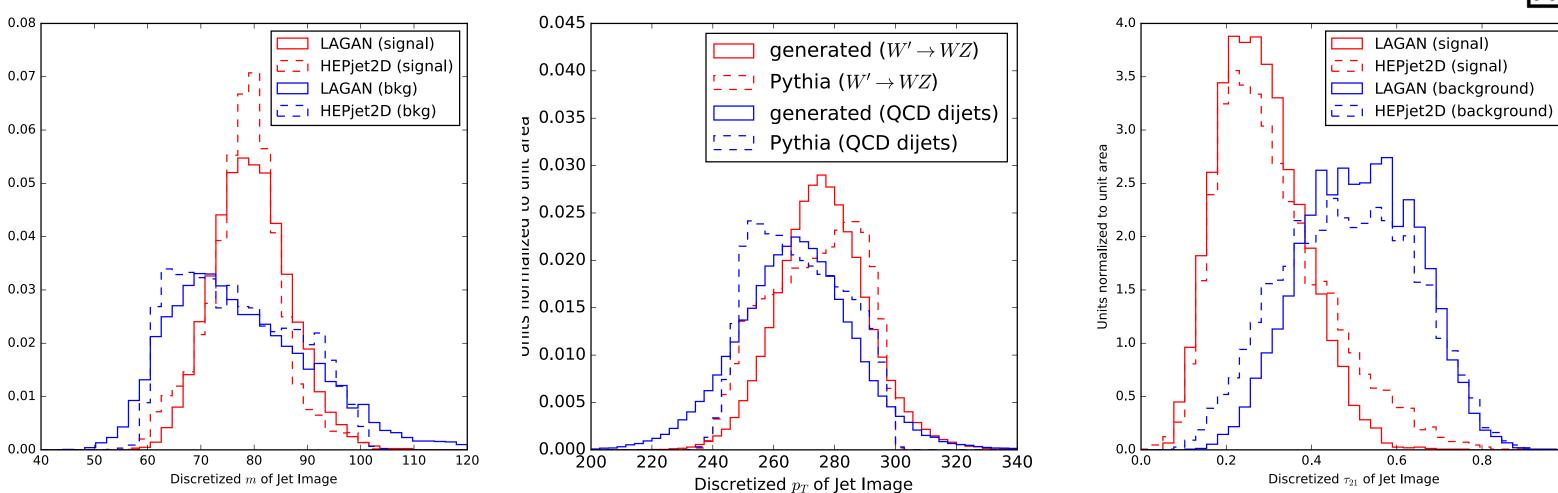
see also de Olivera, Paganini, and Nachman https://arxiv.org/abs/1712.10321





Generating full jets

- Start from random noise
- Works very well with images
 - Applied to electron showers in digital calorimeters as a replacement of GEANT



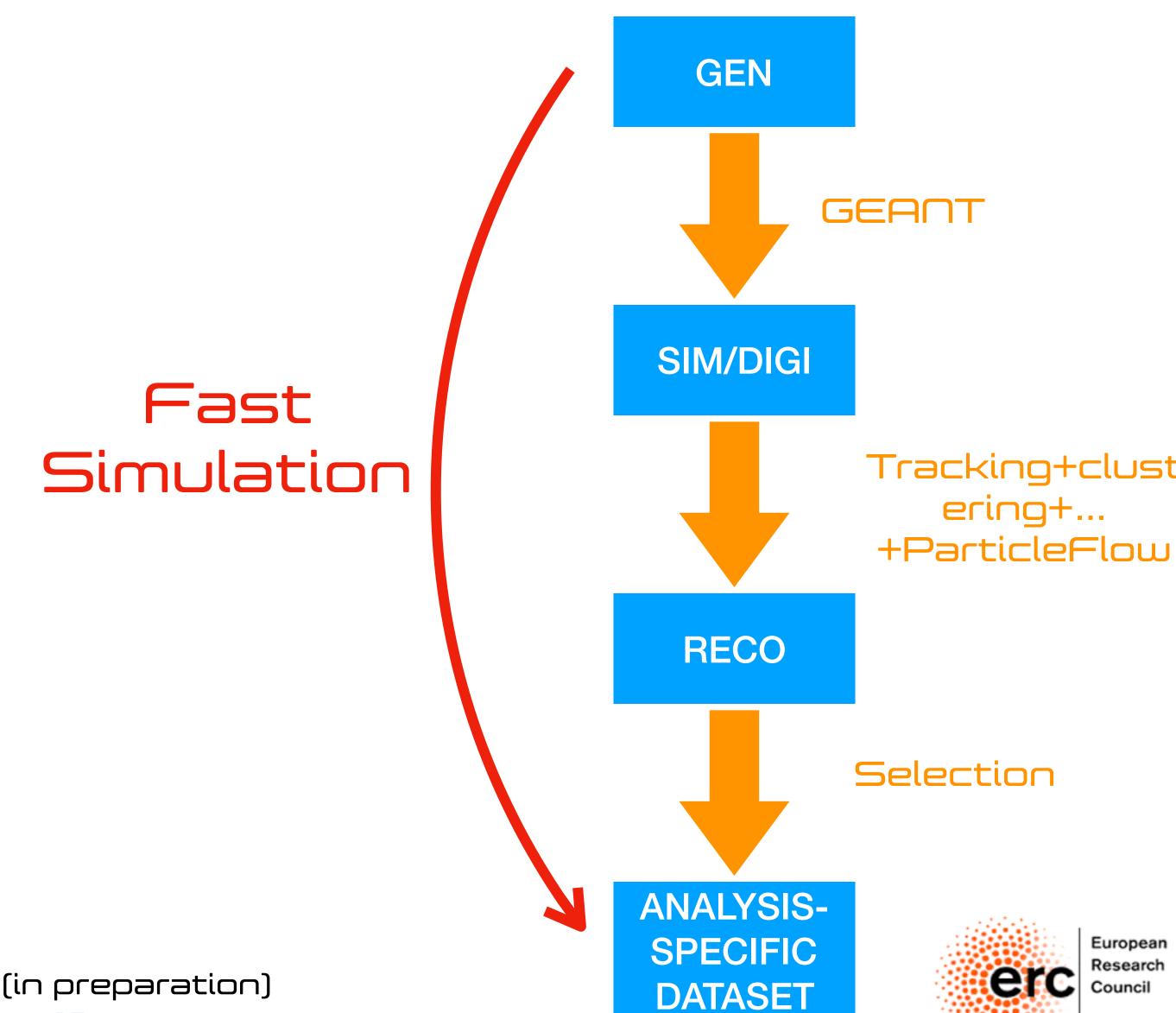
**Othings

de Olivera, Paganini, and Nachman https://arxiv.org/pdf/1701.05927.pdf

Figure 6: The distributions of image mass m(I), transverse momentum $p_{\rm T}(I)$, and n-subjettiness $\tau_{21}(I)$. See the text for definitions.

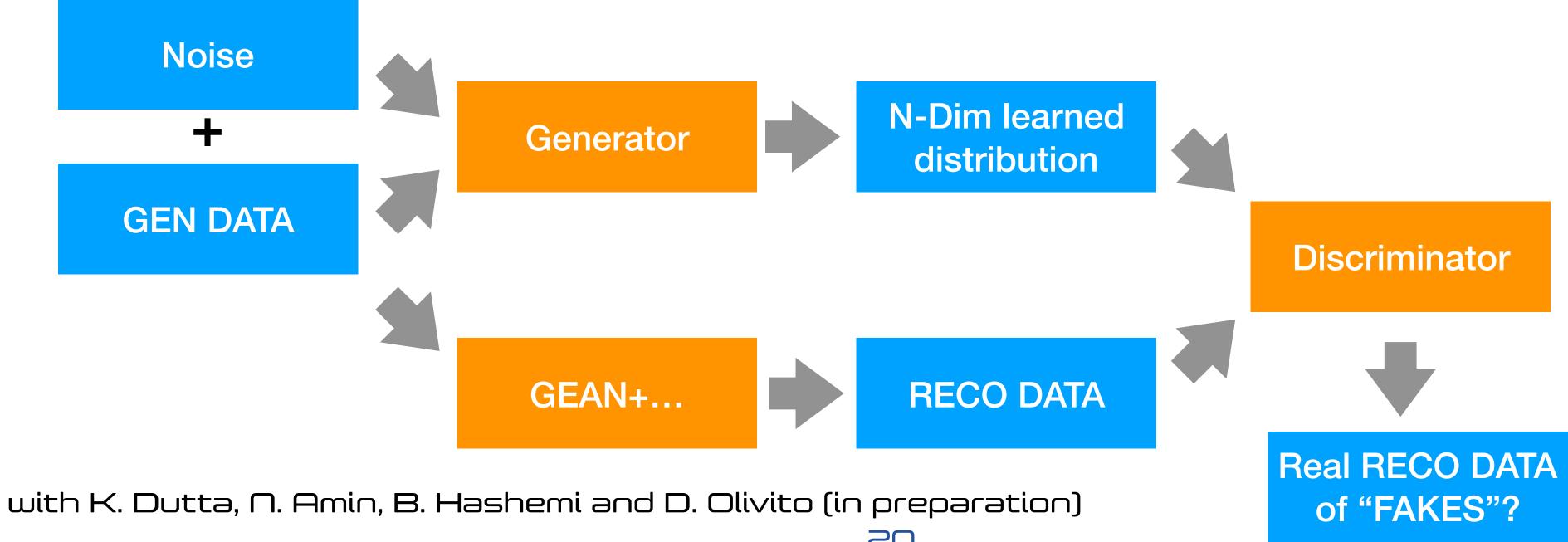
Analysis-specific dataset generation

- In view of large statistics needs, one can use generative models as statistics augmentation tools
- For instance, could generate expert-feature quantities used in an analysis (muon fourmomenta, jet momenta, etc.)
- Like sampling from histogram with two main advantages
 - no need to bin
 - generalizes to multidimensional problems



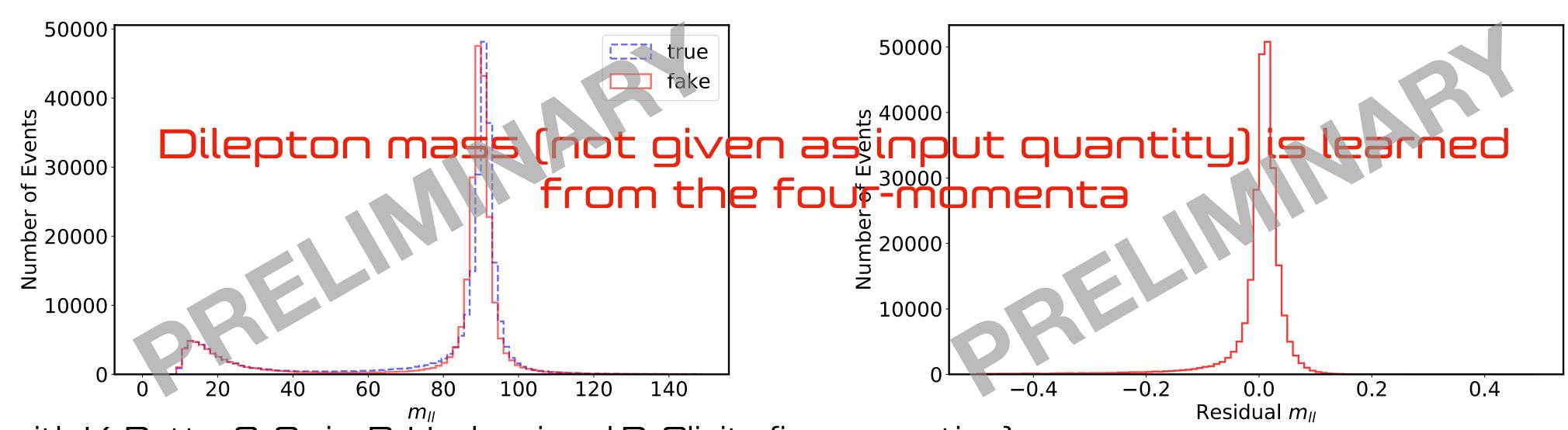
An example

- Dimuon events at LHC
- Typical analysis would use a few handful of quantities (muon momenta, isolation, jet pTs, etc)
- Can learn the N-dim distribution of these quantities with GAN setup
- Can use the generator network as a fastsim tool



An example

- Dimuon events at LHC
- Typical analysis would use a few handful of quantities (muon momenta, isolation, jet pTs, etc)
- Can learn the N-dim distribution of these quantities with GAN setup
- Can use the generator network as a fastsim tool

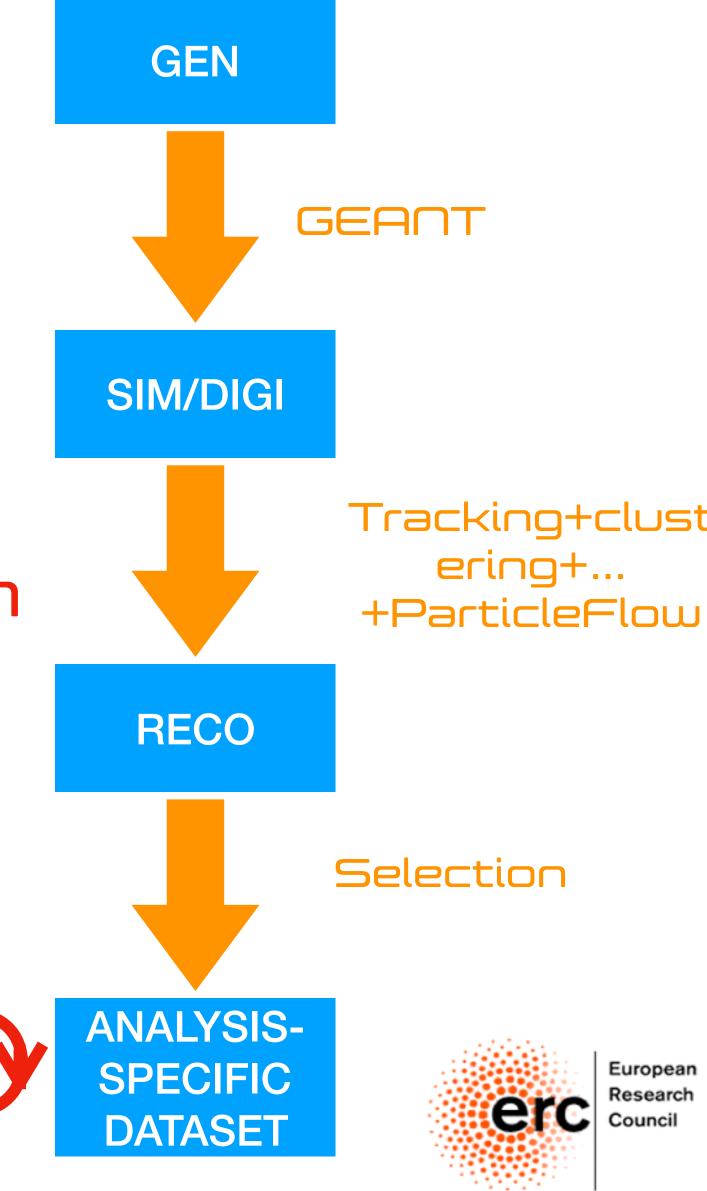


with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)

Analysis-specific dataset generation

- In view of large statistics needs, one can use generative models as statistics augmentation tools
- For instance, could generate expert-feature quantities used in an analysis (muon fourmomenta, jet momenta, etc.)
- Like sampling from histogram with two main advantages
 - no need to bin
 - generalizes to multidimensional problems

Statistics Augmentation



40000

20000

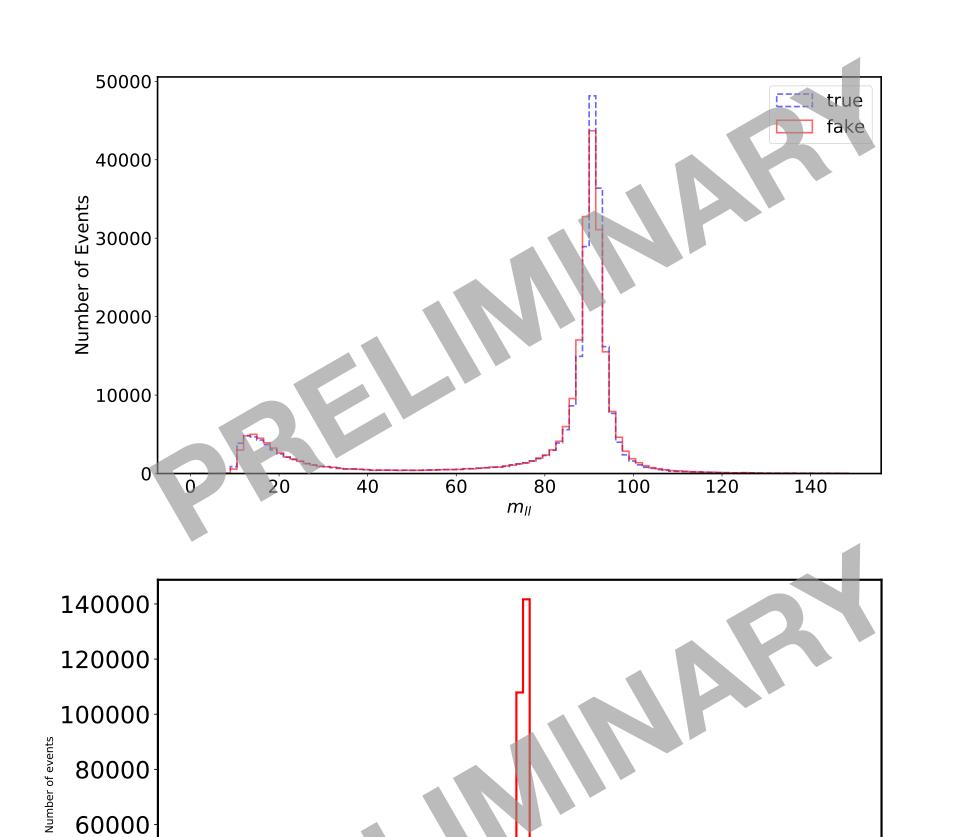
-10.0 -7.5 -5.0

-2.5

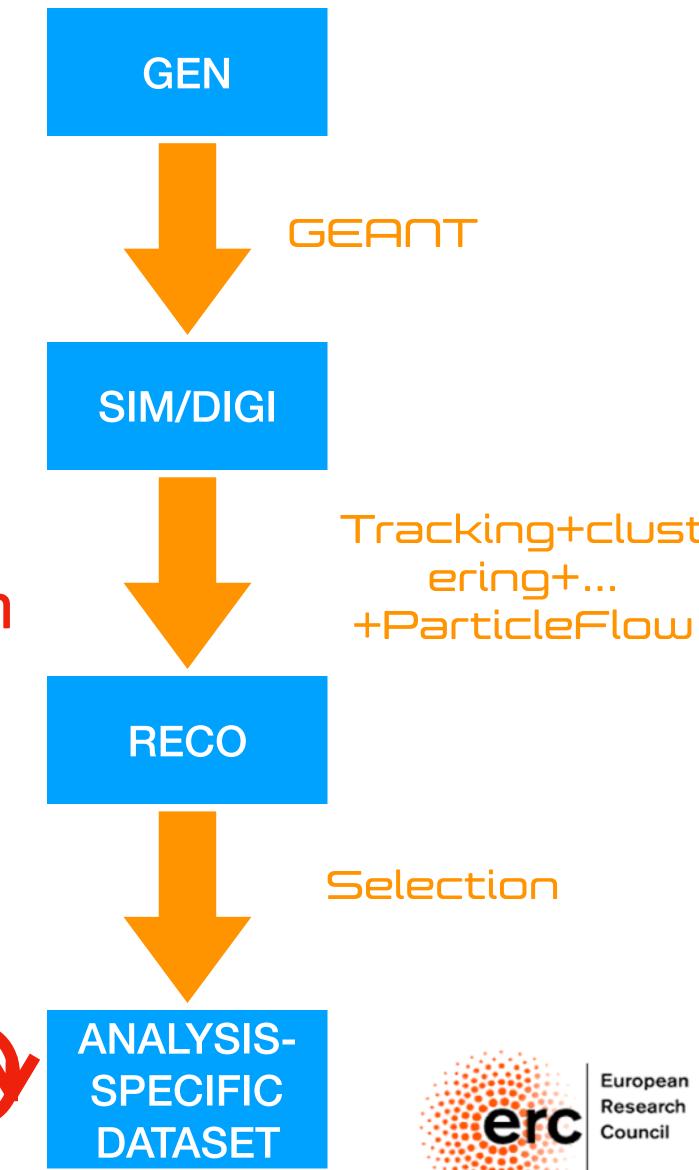
0.0

Residual m_{II}

Analysis-specific dataset generation



Statistics
Augmentation



with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)

2.5

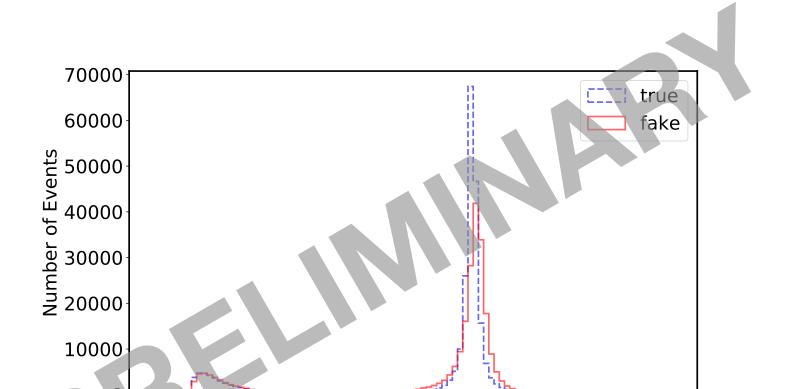
7.5

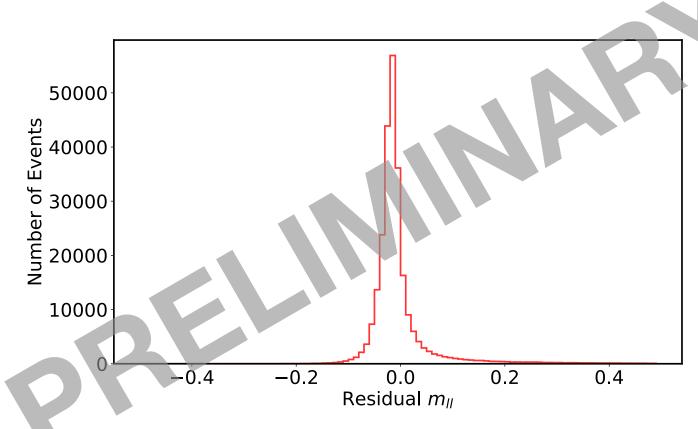
5.0

10.0

Analysis-specific unfolding

- One could invert the process and learn to predict the GEN features from the RECO ones
- Formally the same procedure
- Invert the role of the target and the input datasets

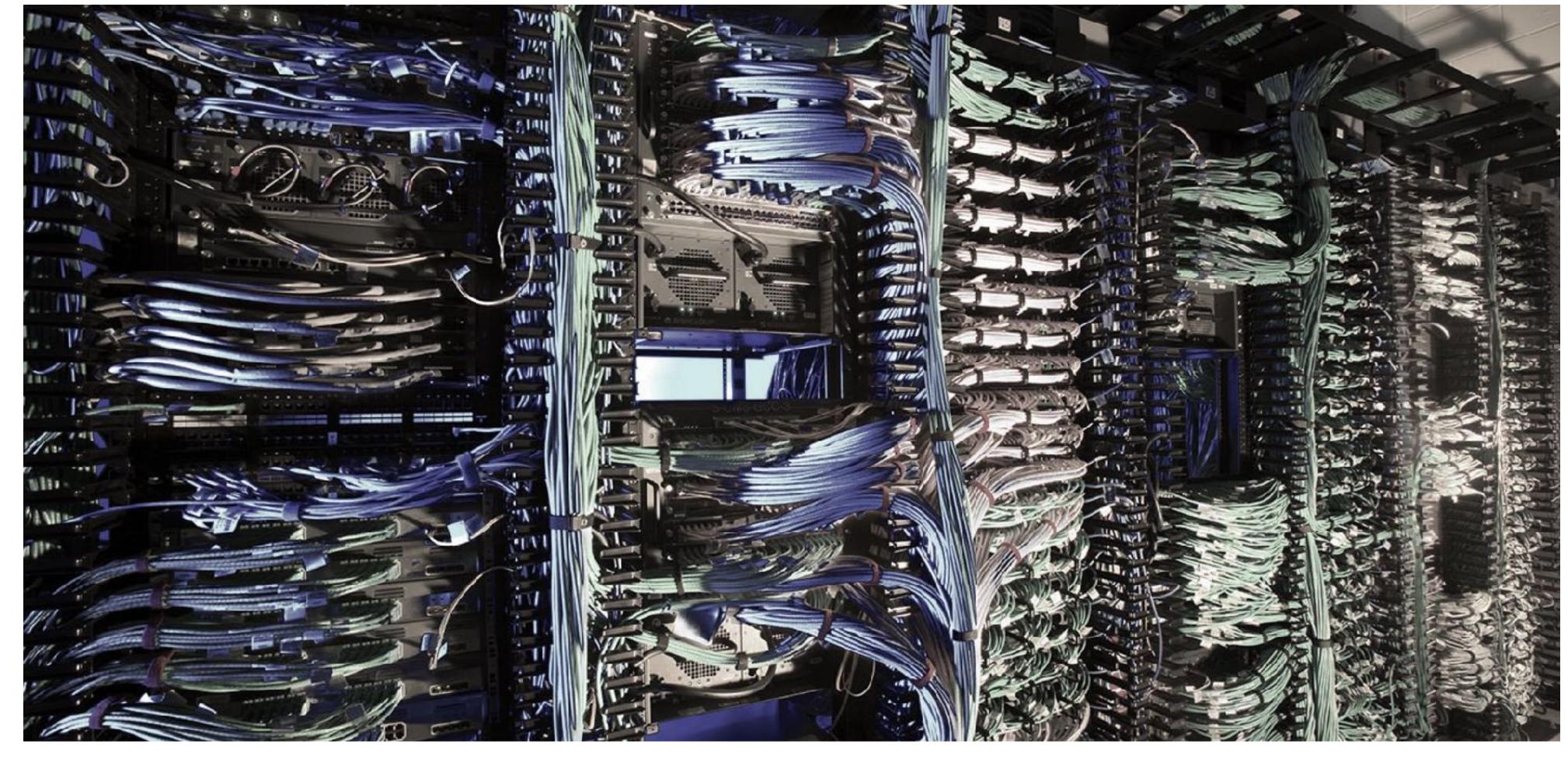




Unfolding

GEN GEANT SIM/DIGI Tracking+clust ering+... +ParticleFlow **RECO** Selection **ANALYSIS-SPECIFIC** European Research DATASET

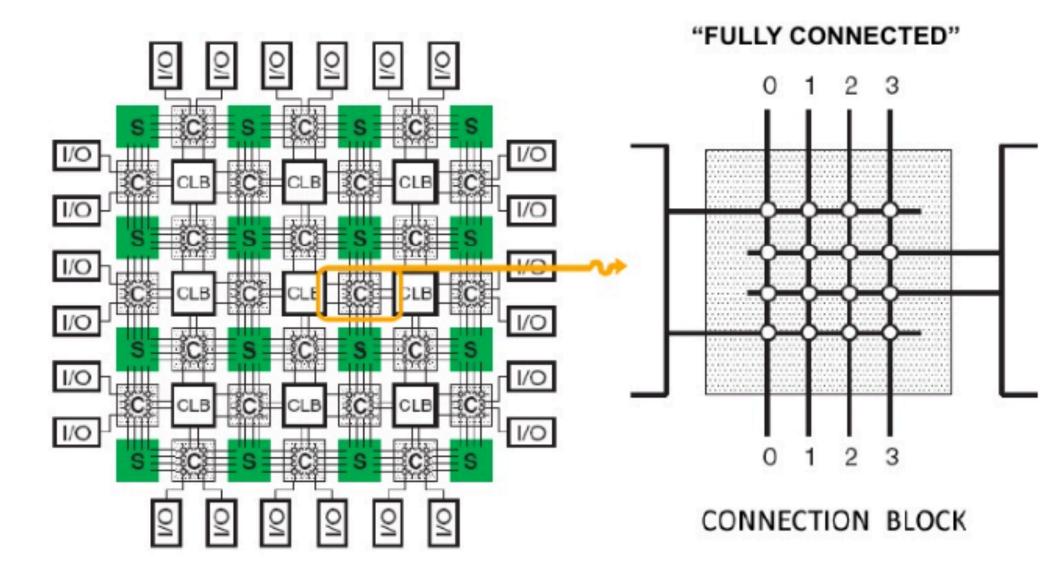
with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



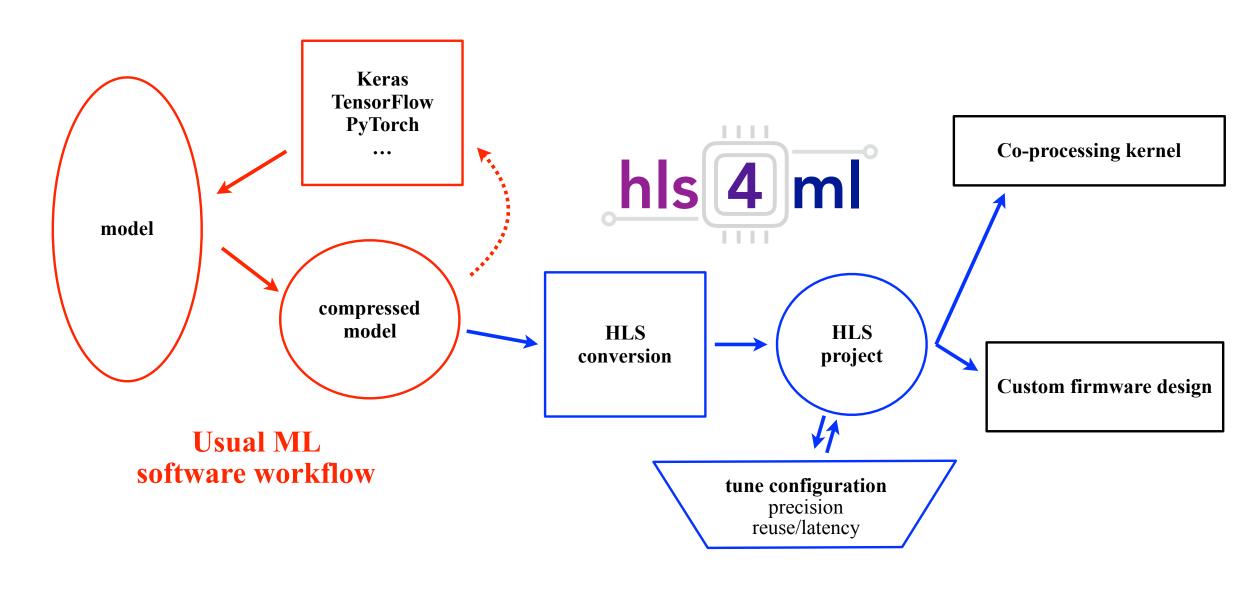
Machine Learning for trigger systems

The frontier: bring DL to L1

- The L1 trigger is a complicated environment
 - decision to be taken in ~10 µsec
 - only access to local portions of the detector
 - processing on Xilinx FPGA, with limited memory resources
- Some ML already running @L1
 - CMS has BDT-based regressions coded as look-up tables
- Working to facilitate DL solutions
 @L1 with dedicated library

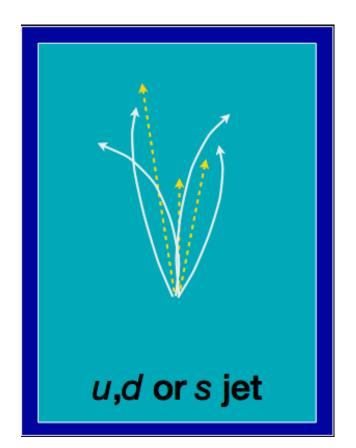


HLS4ML: CERN/FNAL/MIT collaboration



The use case: jet tagging

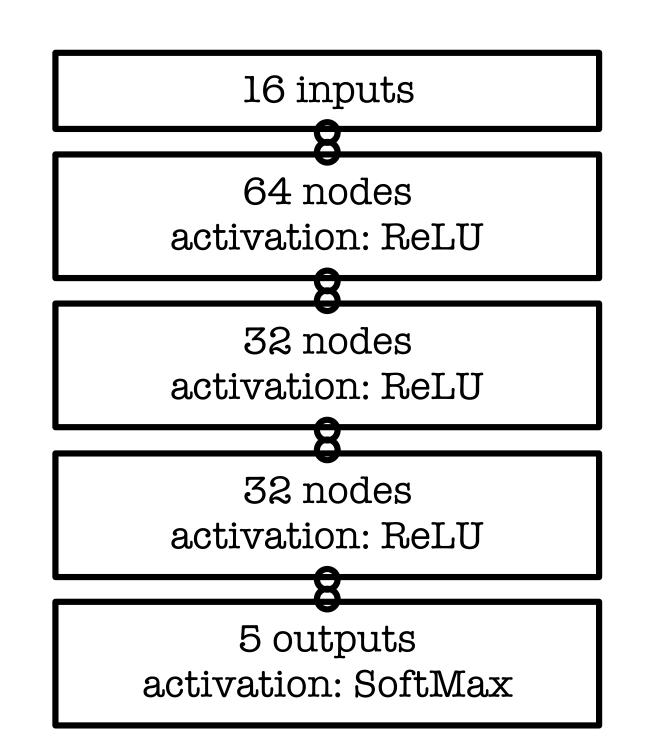
- An LHC collision produces many kinds of jets
- Usually, jet tagging is resources demanding and happens late in the game
- We took this as a use case for a NN to be deployed @L1

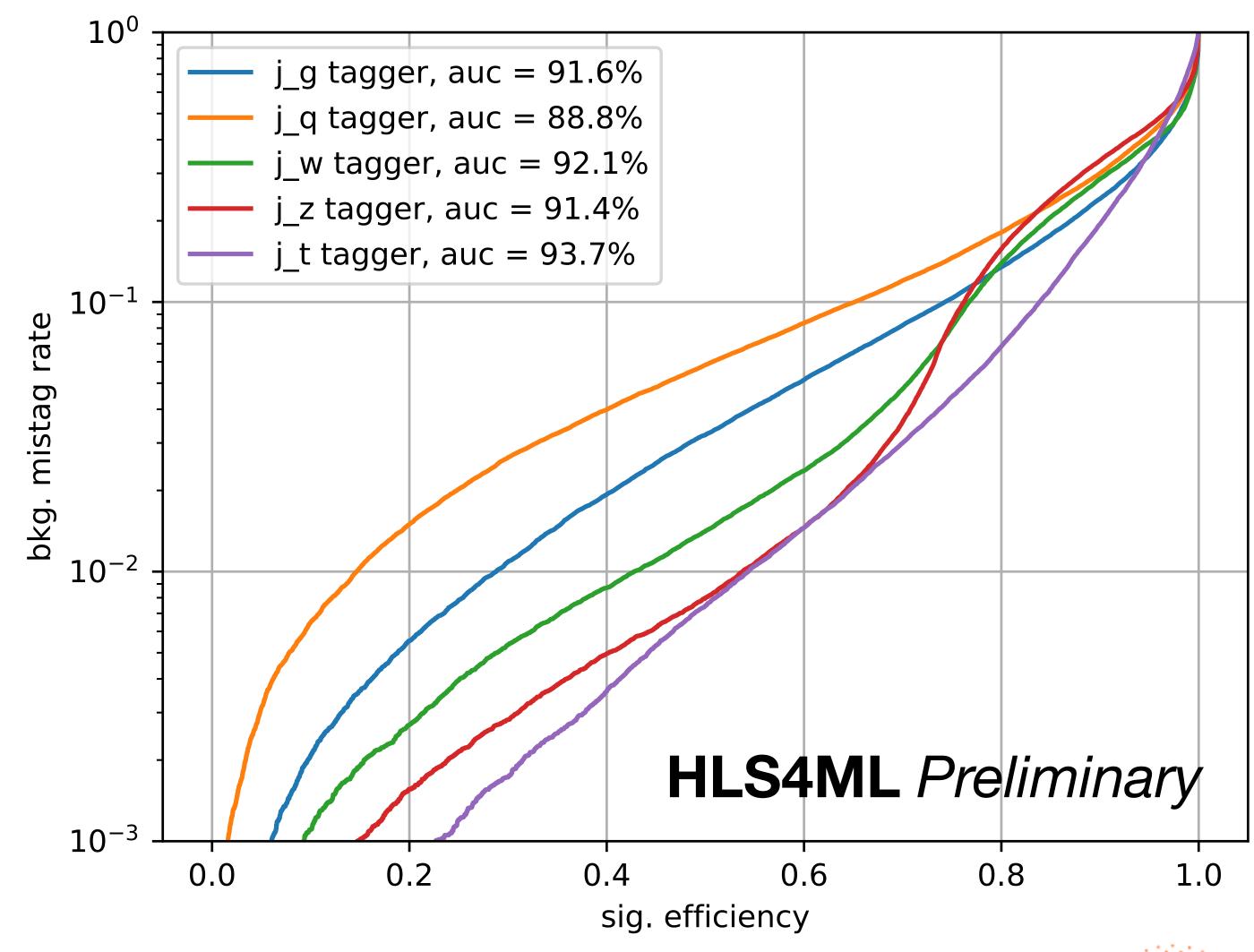




A jet multiclass classifier

Simple DNN based on high-level features (jet masses, multiplicities, energy correlation functions)



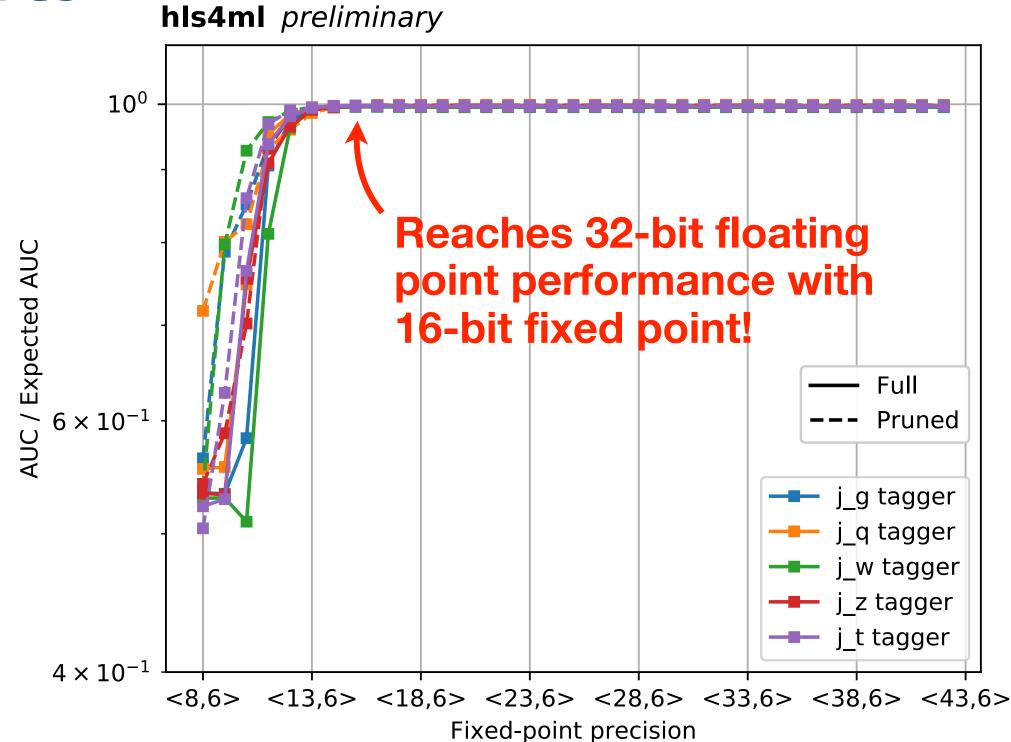


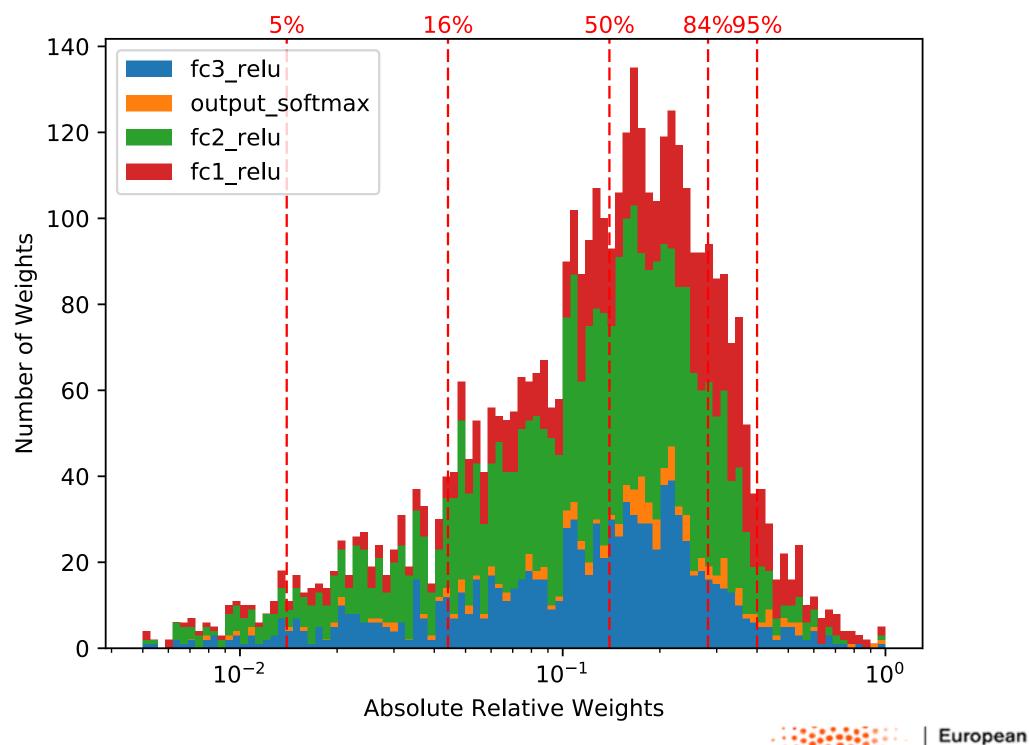
Online deployment: pruning

- Reduced needed resources:
 - pruning: removes nodes and connections preserving performances

• quantization: limit numerical precisions saving

bits





synapses

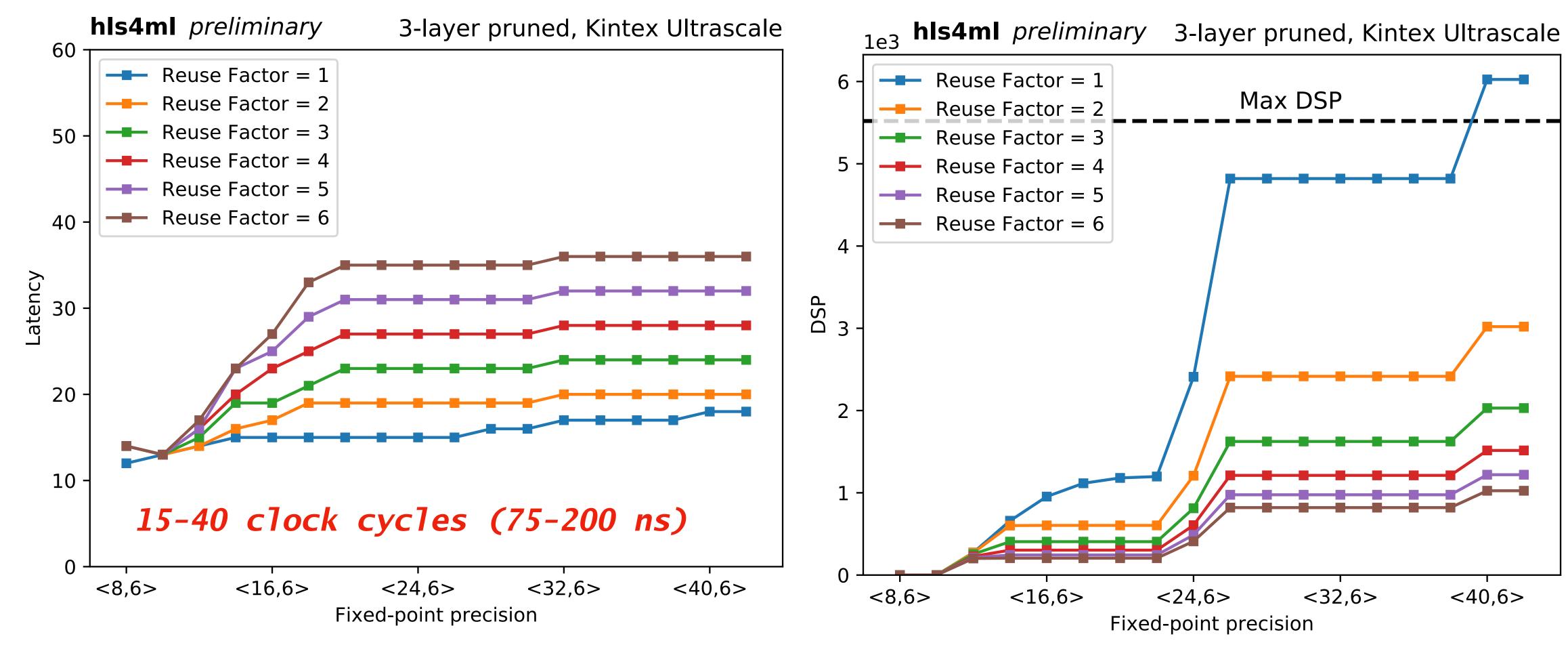
neurons

Research

Council

< total bits, integer bits >

Performances



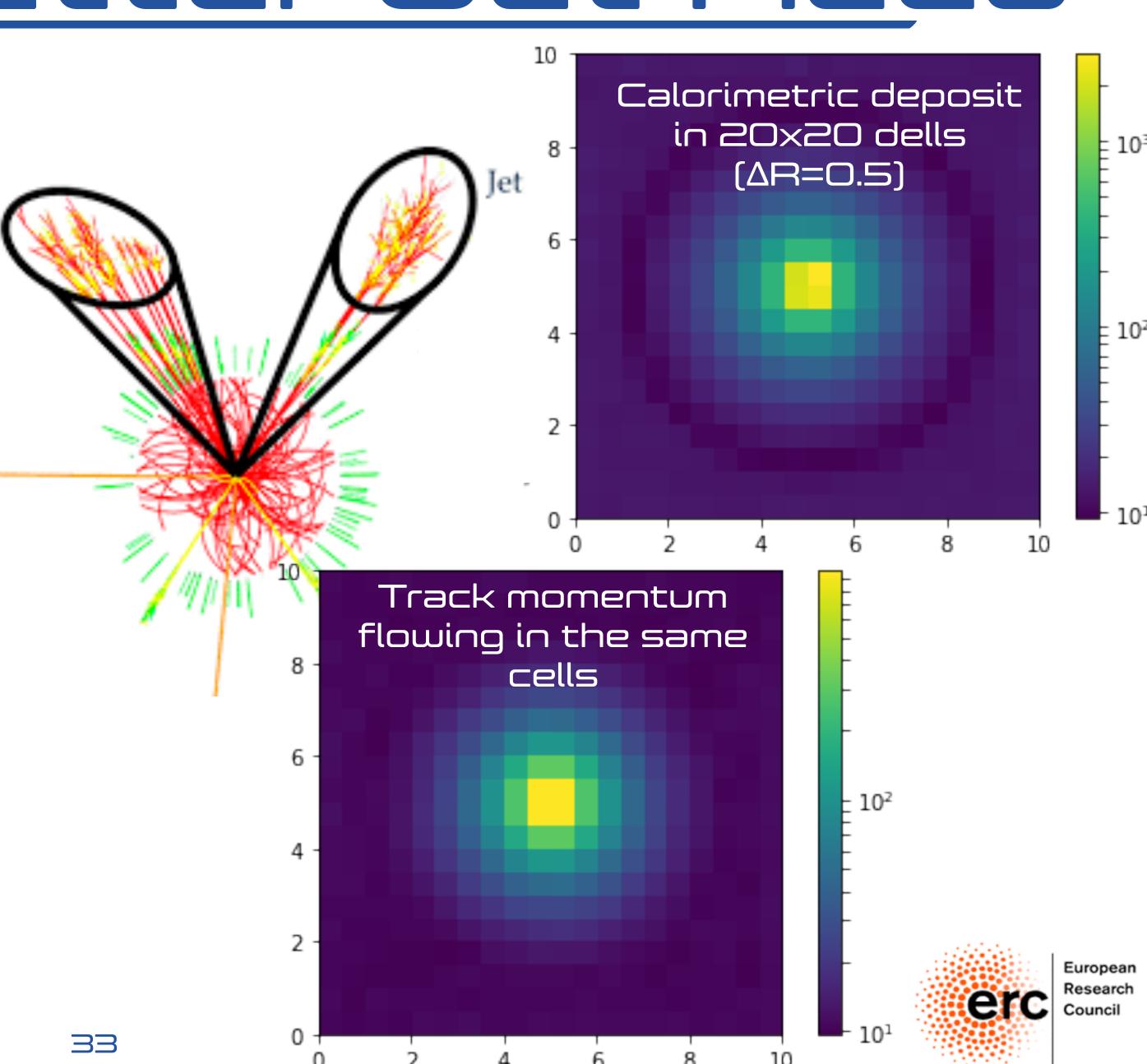
NB: FPGA emulator over-estimates resource needs by a factor 2-4 (tested our emulation vs actual deployment)

European Research

- Modern Machine Learning is becoming a crucial ingredient to HEP, mainly due to the challenges of High-Luminosity LHC
- The clean e+e⁻ environment might not necessarily call for advanced ML applications. Nevertheless
 - A clear advantage was prove in similar situations (neutrinos)
 - This is where the field is going. Why not profiting?
- Applications span across many typical HEP workflows
 - PID, energy measurement, simulation, DAQ/Trigger
- Work started, and a long way to go to meet very-high precision requirements of an intense e+e-collider

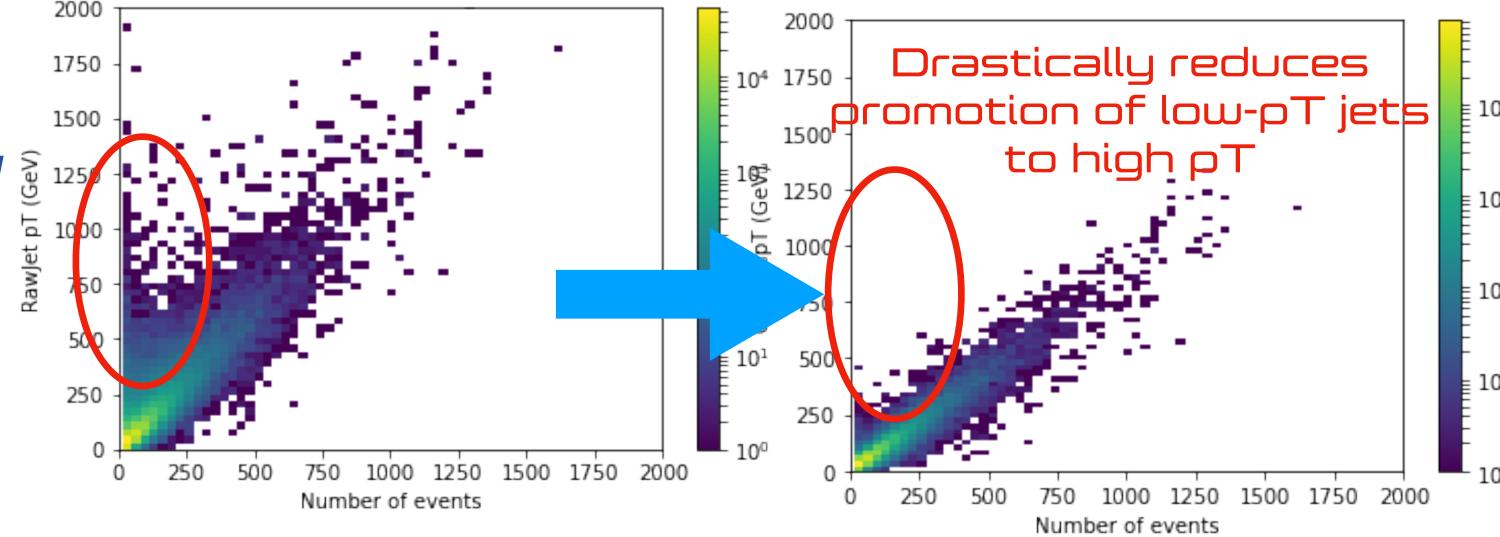
Faster/better Jet Reco

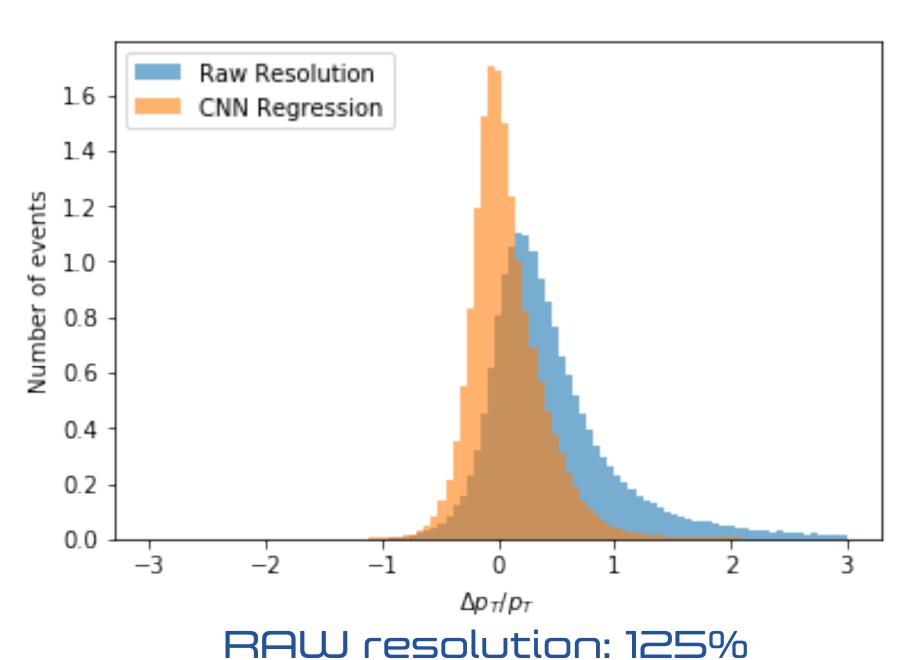
- Offline, reconstructed from full particles using Particle Flow (accurate but slow)
- At L1, low-level objects are used
 - map of energy deposit on calorimeter
 - (in the future) local tracking (maybe pixel only)
- ML could make jet reco at trigger faster & better



Faster/better Jet Reco

- With a simple network, substantial improvement observed (could be pushed observed) further, optimizing the network architecture)
- © Consequences downstream:
 - better select the
 100000 events to
 write /sec
 - With better input, HLT could work even better
 - We could recover lost territory/gain new territory and extend our search capability

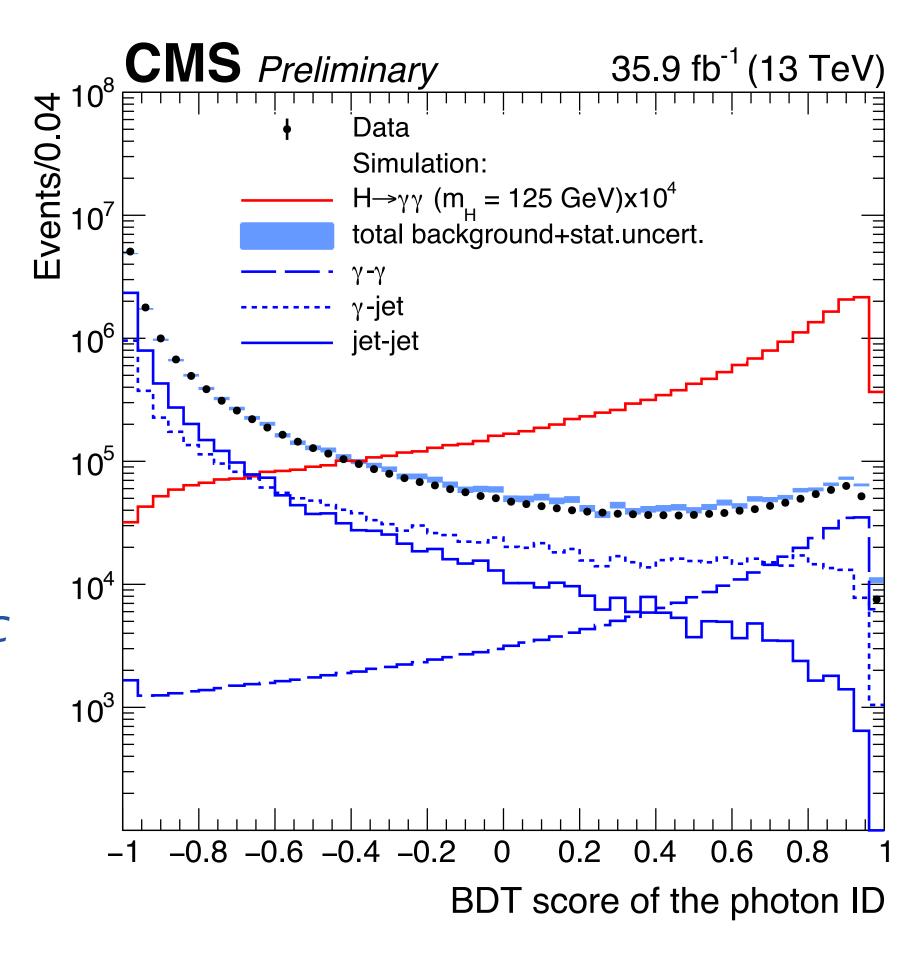




CNN resolution: 36%

What we do with ML today

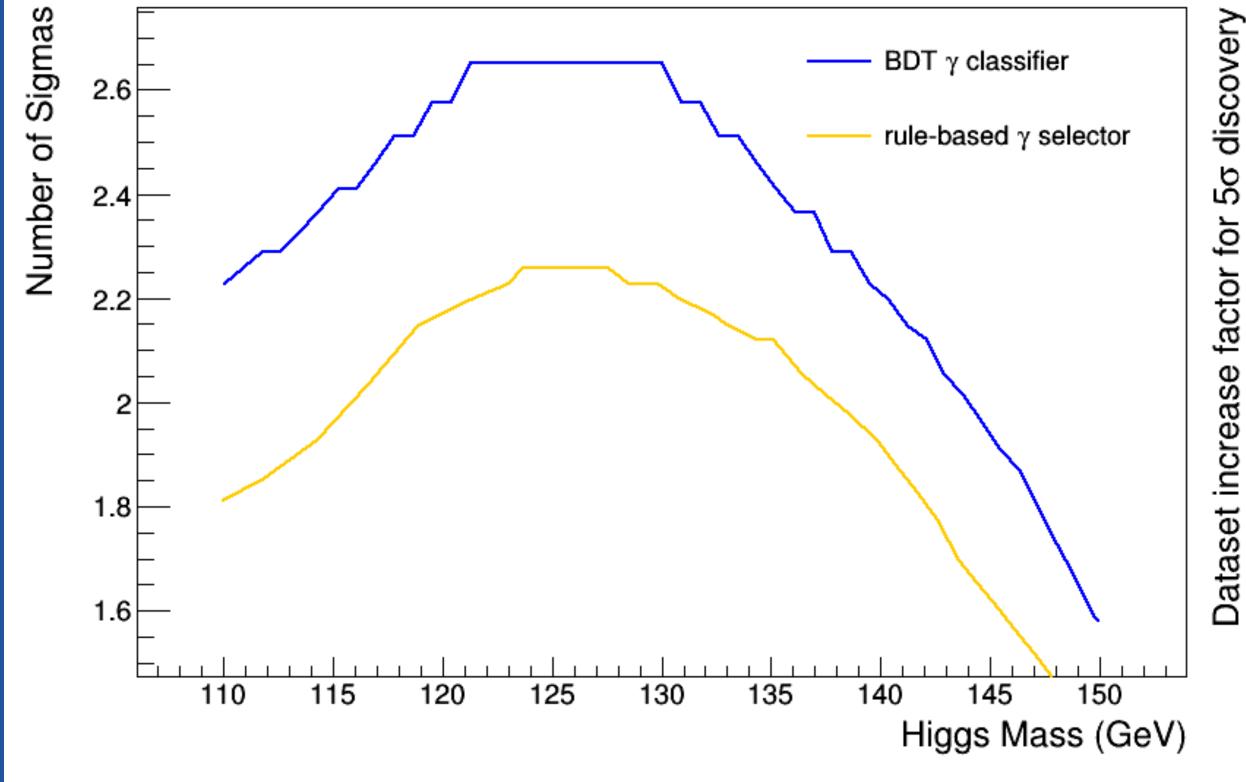
- Classification:
 - identify a particle & reject fakes
 - identify signal events & reject background
- Regression:
 - Measure energy of a particle
- We typically use BDTs for these task
 - moved to Deep Learning for analysis-specific tasks
 - same will happen for centralised tasks
 (eventually)

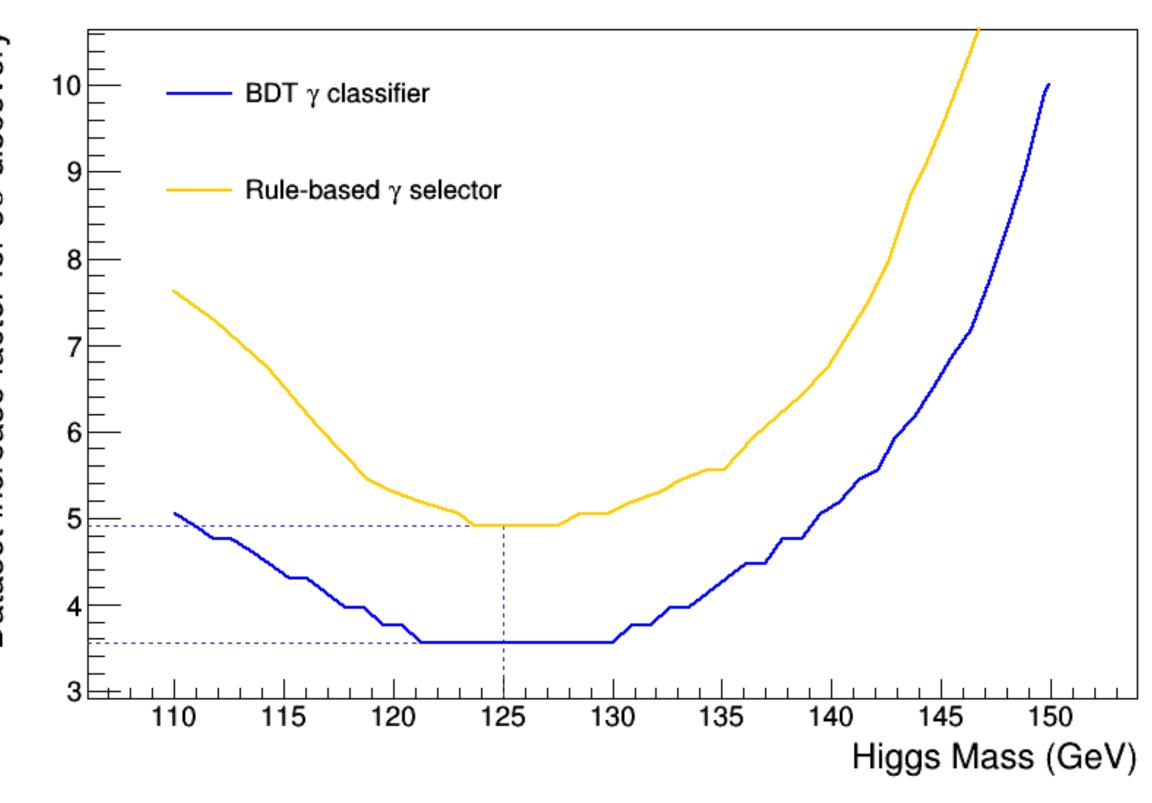


Centralised task (in online or offline reconstruction)
Analysis-specific task (by users on local computing infrastructures)

Example: ML for Higgs discovery

- We were not supposed to discover the Higgs boson as early as 2012
- Given how the machine progressed, we expected discovery by end 2015 /mid 2016
- We made it earlier thanks (also) to Machine Learning





HL4ML: FPGA details

Xilinx Vivado 2017.2

Results are slightly different in other versions of Vivado e.g. 2016.4 optimization is less performant for Xilinx ultrascale FPGAs

Clock frequency: 200 MHz

Latency results can vary (~10%) with different clock choices

FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)

Results are slightly different in other FPGAs e.g. Virtex-7 FPGAs are slightly differently optimized

