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LUJhat 1s Machine Learning

® Machine learning i1s a technique by which an
algorithm 1n trained with example to
accomplish a task

® as opposed of being programmed to do so,
by specified rules

® Deep Learning 1s the cutting-edge ML
technology

® based on “old-school” neural networks +
augmented computational capabilities (e.g.
GPUs) and “new” architectures (recurrent
nets, convolutional nets, autoencoders, ..)

® the breakthrough is fast differentiability
(back-propagation) allowing fast

optimization
Training a Machine Learning
® DL networks are good 1n learning non- algorithm consists in minimizing a
l1near functions: can be a fast shortcut complicated multi-dimensional
to replace heavy processing tasks function
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HL-U_UHC &S ITIL a5 3 must

This 1s when the R&D has to
happen

- Py Faoe oo 25 ||||M

LHC Today

» ~40 collisions/event ~200 collisions/event
» ~10 sec/event processing time » ~minute/even

processing time(
» (at best)Same computing resources as » (at best)Same computing resources as
today today e in
g ” CMS Simulation, ys = 13 TeV, it + PU, BX=25ns §
€ 16 :
® Flat budget vs. more needs = current rule- D ok TeckeceGument :
based reconstruction algorithms will not be & J ~ Treck Reco Runt :
" 12
sustainable g :
10
: 8 ;
® Adopted solution: more granular and complex I :
detectors » more computing resources needed )i ]
> more problems £ i
] ] ] R Ty 50 80 70
® Modern Machine Learning might be the way out PileUp

4 MWith nowadays software development




HL-U_UHC &S ITIL a5 3 must

® Machine Learning can act as a short-cut to reduce CPU needs
to accomplish computational tasks:

® express the answer of a traditional algorithm as a function
learned by examples

® ML deployment 1s happening at any level: L1, HLT,
reconstruction, Monte Carlo generation & analysis

1 KHZz

100 Hz 1 MB/evt




LUJhy M for Future ete

® A-priori, there 1s real need to go
1n this direction for ete-
colliders N

should scale up ea577y

@® On the other hand, this 1s where
HEP 1s going (pushed by LHC needs,
but not only)

® Moreover, there might be a
performance gain ~ for free with
these techniques

® See the successful story with
neutrinos
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@7\ Example: PID for v experiments

® Many HEP detectors e S st i -
(particularly underground)
more and more structured as Ly
regular arrays of sensors P
Sal i
® Modern computer-vision
techniques work with images as Vi e o
arrays of pixel sensor (in 1D, A i e P
2D, and 3D) ';: / ujiuhﬂewf;””’/////
® These techniques were applied e e
by Nova on electron and muon ‘00:‘1 - [géi;ﬁlu;.;'.’c'. ]S;cér;uéard approach:
ID o equivalent to 06 bigger mass of
i detector

D
o
T 1

® Impressive gain over
traditional techniques -
(comparable to +30% detector

Percentage
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LUhich computing-vision technigue??

® The main breakthrough of Deep Leaning 1s the capability of
processing directly raw data

® Special architectures read the raw i1nformation (e.g., 1mages) and
convert them into “smart variables” (high-level features) to
accomplish the task

® Typical example: convolutional neural networks for 1mage processing
& computing vision

bird [ p,_
sunset Pounset
o
Lo
o
o
° cat | p
o cat
) . o
convolution + max pooling °
nonlinearity | o
‘e European
. . . .o . .';‘-':i':’""‘r Research
convolution + pooling layers fully connected layers  Nx binary classification -_{-,:;;gG}'C Council
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aster Particle Reconstruction

LUJith Computing Vision .=
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\/)/ Particle reconstruction as image detection

See contribution to NIPS workshop

® Future detectors will
be 3D arrays of
sensors with regular
geometry

® Ideal configuration
to apply
Convolutional Neural
Network

Convolutions Convolved Feature Layers

® speed up
reconstruction at
similar performances

® and possibly 1mprove I
performances erc B
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https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Proof of Principle: Particle ID

ROC curve for y vs. n¥ classifier

=

® We tried particle ID on a sample of
simulated events

y signal efficiency
-
o0

® one particle/event (e, y, mo, ) .
0.4-
® Different event representations 0 ——DNN (cells)
~ DNN (features)
004 | . BD'T

® high-level features related to event
shape (moments of X,Y, and Z
projections, etc)

00 02 04 06 08 1.0
n' background efficiency

ROC curve for e vs. ™ classifier

. > 1.0
® raw data (energy recorded 1n each 2
cell S 0.9
) =
L
. . = 0.8
® Pre-filtered pion events to select the §
nasty ones and make the problem harder 07
06 == DNN (cells)
v ——— DNN (features)
0.5 — BDI g P
See contribution to NIPS workshop To0 01 02 03 04 0. EFC) com
i n* background efficiency —REE



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

@ Proof of Principle: Energy Regression

Predicted energy X True energy

Photons . Electrons . ECAL input /2 H(% A|5- igg)ut
® Correctly reconstruct . . - eee (ﬁ o
energy 3 o R (ﬁ i
5 MaxPooling3D MaxPooling3D
% N'eut'ral 'pio'ns S Cr'mart_';ed‘pio'ns i (11,11,11,3) (2,2,27,10)
® ECAL performances betters:E " | e
8 102 -5 (3993') R atten
than HCAL (as expected) = N\ /— (1000,
Merge
100 200 300 400 500 10° 0 100 200 300 400 500 10° (5073')
@ T[O I‘GSO 7Ut -i On ~ '\/2 Y True energy (GeV) Dense
resolution (as expected) . ® Protone “‘:‘”
N Electrons ) )
O USEd Oon 7y RAW data as % o ® Neutral Pions
. Y _
1hpu TS gm - Charged Pions ogii) (GeV)
g i
B |
» Processing time reduced 10-
by <msec \ i
0- AR | pactd
' ' ' ' . i.::,.:..e‘.r C Council
See contribution to NIPS workshop 2 : - Enz(;gy (é;ooeV) w -



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

@j\ Proof of Principle: Energy Regression

Predicted energy X True energy

oo e i .
® Correctly reconstruct - o . B (L o
energy 8 ol . b s (ﬁ (44,5510
§ Y o o Ry 0297, 90)
® ECAL performances betterE = R | S— D
than HCAL (as expected) &= AN g
| v _— 507%)
@ m resolution ~ /2y True energy (Gev e
resolution (as expected) e R “‘;"‘”
‘ —— DELPHES ILC resolution * (1)
® used only RAW data as F
1nputs St Working on improving performandes %) (GeV)
» Processing time reduced P
by <msec 100 LR | europesn
See contribution to NIPS workshop 13 True Encrgy [Gev]



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Generating large datasets
with small resources =




® Neural Networks can be
trained to generate events

similar to those they are
trained on

® [wo main approaches these
days

® Variational Autoencoder:
train the encoder, sample
from the latent distribution
& decode the sampled point

® Generative Adversarial
networks: train a generator
by fooling a classifier
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https://arxiv.org/abs/1511.06434v2?__hstc=36392319.4ec9da873182c5b0427a0d36b934b567.1481240248017.1481240248017.1481240248017.1&__hssc=36392319.1.1481240248017&__hsfp=1005577320

Rdversarial Training ...

generator
) [data sample} [ discriminator } [ g(:grenraltem J
® Two networks trained d °
. t
simultaneously sample?
[yes / no]

® Generator: from noise to an

event (e.a. 1m . — convolutional layers in both G and D
( g age) . — fully-connected layers in both G and D

— acombination of the two:

® Discriminator: distinguish real
events from those created by
genera tor Discriminator< y
® Loss function given by Generator/ .l
discriminator — = avel- GE
|
® Parameter space = SUM of weights
of the two networks o
arXiv:1701.05927 &yt
15 TN e



https://arxiv.org/pdf/1701.05927.pdf
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Particle shower generation

See contribution to NIPS workshop Shower longitudinal section
® Start from random noise o -
g.n?é_ GiONngenera’red —+ =i=:|:+
® Works very well with images o - -
® Applied to electron showers in digital calorimetersasa ' = -
replacement of GEANT I T~
; :_gioNn;inem | - Shower transveise secnurn
. » _ '. 8 - l_._l='=‘ i—
o '
- 4 — .
o s g © SAserootes
r - g
see also de Olivera, Paganini, and Nachman | SO - SN B U D= RS e}‘C o
https://arxiv.org/abs/1712.10321 17 R



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1712.10321

Generating full jets

stride

' -

® Start from random noise

® Works very well with images

LD T

® Applied to electron showers in digital calorimeters
as a replacement of GEANT

0.08 . . . 0.045 . . . . . 4.0 . .
1 LAGAN (signal) ] generated (W' — WZ) 1 LAGAN (signal)
- = — 1 HEPjet2D (signal) || 0.040} o ] , L — 1 HEPjet2D (signal)
0.07 "'l LAGAN (bkg) '~ 7! Pythia (W' — W2Z) 35 1 LAGAN (background)
| 551 HEPiet2D (bkg) 2 0.035 1 generated (QCD dijets) | L, - nemenp tadaound]l - de Olivera, Paganini, and Nachman
. | | ]_) r= = P . . . i , ,
o - 5 '__' Pythia (QCD dijets) o _
£ 0.030) | https://arxiv.org/pdf/1701.05927.pdf
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https://arxiv.org/pdf/1701.05927.pdf

@ RAnNnalysis-specific dataset generation

® |n view of large statistics needs,
one can use generative models
as statistics augmentation tools

M1

® For instance, could generate
expert-feature quantities used
in an analysis (muon four- = SI/DIG
momenta, jet momenta, etc.) 9=

SiMmMulsation Tracking+clust
ering+...
® Like sampling from histogram +ParticleFlow
with two main advantages
® no need to bin
Selection
® ceneralizes to multi-
dimensional problems ANALYSIS-
SPECIFIC g | S
with K. Dutta, M. AmMiN, B. Hashemt and D. Olivito (in preparation) DATASET er C | counci
19 R




AN example

® Dimuon events at LHC

® Typical analysis would use a few handful of quantities (muon
momenta, 1solation, jet pls, etc)

® Can learn the N-dim distribution of these quantities with GAN setup

® Can use the generator network as a fastsim tool

Generator » N-Dim learned
distribution ‘
GEN DATA '
Discriminator

GEAN+... » RECO DATA I ’
Real RECO DATA G| evopen
with K. Dutta, N. AmMin, B. Hashemi and D. Olivito (in preparation) of “FAKES”? 'Q]:'C Counci
20




AN example

® Dimuon events at LHC

® Typical analysis would use a few handful of quantities (muon
momenta, 1solation, jet pls, etc)

® Can learn the N-dim distribution of these quantities with GAN setup

® Can use the generator network as a fastsim tool

50000
1’; CZ3T true 500001 T
L =1 fake
g 0% . . £ 400001 .
g oo Dilepton MIsS (Mot given ESEQQUt quantity]is.leasrned
& » from the four-momenta |
é 20000 _ é 20000
= i 2
10000 Q: L 10000 ‘/JJ L
°75 20 40 60 80 100 130 140 0 —0.4 —0.2 0.0 0.2 0.4 LT | Europesn
my Residual my '.',:..’.-:..‘.'.'.-‘.- Research
with K. Dutta, M. AmMiN, B. Hashemt and D. Olivito (in preparation) erc Council
=




@ RAnNnalysis-specific dataset generation

® |n view of large statistics needs,
one can use generative models
as statistics augmentation tools

M1

® For instance, could generate
expert-feature quantities used
in an analysis (muon four- SI/DIG
momenta, jet momenta, etc.)

Statistics Tracking+clust
- - - Ruamentation SNt
® Like sampling from histogram = +ParticleFlow
with two main advantages
® no need to bin
Selection
® ceneralizes to multi-
dimensional problems ANALYSIS-
- . . o | SPECIFIC | opeen
with K. Dutts, M. AmMiN, B. Hashemt and DO. Olivito (1N Ep;eparatlon] DATASET erc Council




RANnalysis-specific dataset generation

50000 -

0
40000 J = U
§3oooo- _i':
5 M1
€ 20000
10000/ J L
I e N SIM/DIGI
0 20 40 60 80 100 120 140
140000, Statistics Tracking+clust
= t t ering+...
120000 Uugmentatlon +ParticleFlow
100000
§ 80000
£ 60000
40000-
20000 Selection
97100 —75 —5.0 —25 00 25 50 75 100
Residual my
ANALYSIS-
SPECIFIC g | e
with K. Dutta, M. AmMiN, B. Hashemt and D. Olivito (in preparation) DATASET e:r C | counci
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Ol Analysis-specific unfolding

® One could invert the process and learn to predict

the GEN features from the RECO ones
® Formally the same procedure ' R
® |nvert the role of the target and the input datasets
SIM/DIGI
UﬂFDldlﬂg Trackingtclust
ering+...
o g +Particle~low
60000 I:I :::\ukee 50000 [
% 50000 :L. ‘% 40000 21010
5 20000 520000: J L Selection
| 70 %’o 60 "é'_(;‘ I}(')o 120 140 0 —0.4 ~0.2 0.0 0.2 0.4
my esiaual my, ANALYSIS' sdetete
SPECIFIC RS | e
with K. Dutta, M. AmMiN, B. Hashemt and D. Olivito (in preparation) DATASET e:r C | counci
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[Machine Learning for
trigger systems =
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The frontier: bring DU to L]

@ The L1 trigger 1s a complicated
environment

“FULLY CONNECTED”

@ decision to be taken 1n ~10 usec

HOR

a(gqls=
" e = — ™ - -
ol ﬁ TR 2
d e 6 Dy & [.2 ™ [

+ » I A >4 3 AL '

— - P —

. " | ¢ K 1-.-H

@ only access to local portions of
the detector

O 1 2 3

=
O g CONNECTION BLOCK

® processing on Xi1linx FPGA, with
l1mi1ted memory resources

RO /FMNAL/MIT collaborstion

® Some ML already running @L1 Keras

TensorFlow

PyTorch
Co-processing kernel

® CMS has BDT-based regressions his 4 ml
coded as look-up tables

_ o _ “dd ms
@ WO rk 7 ng to fa C 7 7 7 ta te DL SO 7 u t 7 Ons e Custom firmware design

@L1 with dedicated Ilibrary Usual ML Vt

software workflow tune configuration
precision
reuse/latency

26


https://hls-fpga-machine-learning.github.io/hls4ml/

The use case: |et ta

® An LHC colli1s10on
produces many kinds
of jets

® Usually, jet tagging
1S resources
demanding and happens
late 1n the game

® We took this as a use

case for a NN to be
deployed @lL1

=2/
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e\ >
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[ et multiclass classifler

® Simple DNN based on
high-level features
(jet masses,
multiplicities,
energy correlation
functions)

16 inputs

64 nodes
activation: ReLLU

32 nodes
activation: ReLLU

3 nodes
activation: ReLLU

O outputs
activation: SoftMax

100 -
| —— j g tagger, auc = 91.6% /
—— j_q tagger, auc = 88.8% ,/
— j_w tagger, auc = 92.1% /
—— | z tagger, auc = 91.4% '
—— | t tagger, auc = 93.7%
_1 _ /
o 10 :
5 ]
(@)
O
%
&
)
re
1072 -
HLS4ML Preliminary
10_3 ! ' ! | | |
0.0 0.2 0.4 0.6 0.8 1.0

=8

sig. efficiency




Ol Online deployment: Qrun n(_:]

® Reduced needed resources:

® pruning: removes nodes and connections
preserving performances

® quantization: l1imit numerical precisions saving

b 7 ts 5% 16% 50%  84%95%
L 140 - ' | | |
his4dml preliminary BN fc3_relu | | |
N output_softmax : : : :
_ | | |
100 - 1201 mmm fc2 relu | | L
B fcl relu | | L
| | |
100 - | | | |
: : ' :
L
l | |
O Reaches 32-bit floating 3 a0 | |
D I - ] ; 7 I I
< point performance with - | |
] [ ] - | - | |
g 16-bit fixed point! 2 60- | |
o g | |
X — Full = : :
5 6x107 ——- Pruned 40 - :
2
—s=— | g tagger 20 -
I —=— j_q tagger
—=— | w tagger
—=— | z tagger 0 -
- -2 -1 0
i_t tagger 10 . | .10 . 10
4 x 10-1 Absolute Relative Weights

European

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6> <43,6> ,-.‘.:.'. Research
Fixed-point precision ‘:':erc Council
< total bits, integer bits > == CEEERIN




60

Performances

hisdml preliminary

3-layer pruned, Kintex Ultrascale

50 A

20 A

10 A

SEERR

Reuse Factor =1
Reuse Factor = 2
Reuse Factor = 3
Reuse Factor = 4
Reuse Factor = 5
Reuse Factor = 6

2

15-40 clock cycles (75-200 ns)

<8,6>

<16,6>

<24,6> <32,6> <40,6>

Fixed-point precision

le3 his4ml preliminary 3-layer pruned, Kintex Ultrascale

6 4 —®— Reuse Factor=1
| —-— ReuseFactor=2_______ME)iES_P ______ ]
—#— Reuse Factor = 3
51 —a— Reuse Factor =4
—@— Reuse Factor =5
—#— Reuse Factor = 6
4 -
3 -
2 -
1 -
O * | | | 1
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

MNB: FPGA emulator over-estimates resource Needs by a Factor

=-4 (tested our emulation vs actual deployment]
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Conclusions

® Modern Machine Learning 1s becoming a crucial 1ngredient to
HEP, mainly due to the challenges of High-Luminosity LHC

® The clean ete- environment might not necessarily call for
advanced ML applications. Nevertheless

@ A clear advantage was prove 1n similar situations
(neutrinos)

® This 1s where the field i1s going. Why not profiting?
® Applications span across many typical HEP workflows
® PID, energy measurement, simulation, DAQ/Trigger
® Work started, and a long way to go to meet very-high preC757on

requirements of an intense e+te- collider FEEE | e

31
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Faster/better Jet Reco

® Offli1ne , recons tructed Calorimetric deposit
1 1 IN 20x20 dells
from full particles using ~ . aa

Particle Flow (accurate
but slow) .

@ At L1, low-level objects
are used

® map of energy deposit , /X
on calorimeter Py Track momentum

flowing In the same
cells

® (1n the future) local
tracking (maybe pixel
only)

I

European
Research
Council

® ML could make jet reco at
trigger faster & better




Faster[better det Reco

2000

@ With a simple network, 1750 | - _ . . :ZZ Drastically reduces
substantial improvement  swj - _'-_":_.i' - s romotion of low-pT jets e
observed (could be pushed §»¢ T : cohiahp’™ ;
further, optimizing the %% i AR
network architecture) ¢ 3 ' * e ’

\ ] 1C

® Consequences downstream: "0 230 500 730 1000 1250 1500 1750 2000 e i 10

Number of events 0 250 500 rﬁ?n i ::Jg?evljrig 1500 1750 2000
® better select the
100000 events to 16 { mm CNN Regression
write /sec e
%’ 12 A
® With better 1nput, HLT s
could work even better € 6.
0.4 -
® We could recover lost 02 -
territory/gain new . . I T
territory and extend Bpripr RS | L

- RAW resolution: 125% 2T C counci
our search capability 34 A recolution: SE0k




LUJhat we do with ML todgay

® Classification:

® 1dentify a particle & reject fakes 108CMS Preliminary 35.9 fb™ (13 TeV)
§ §I I | 1 |+I I |Dlalltal | 1 | 1 | 1 | 1 | 1 | I I§

’ ’ ’ 1 = B Simulation: i

® 1dentify signal events & reject background 2 et (. =125 GeV)x10 -
o 10 - I total background+stat.uncert. E

LLI - _

® Regression:

® Measure energy of a particle

® We typically use BDTs for these task R, '-'-ﬂ-vf""" L

® moved to Deep Learning for analysis-specific
tasks

"|"|"|'|'I'T'ILI-|I-l

'_—l—"'_'-
—rl
—
—

[ IIIIIII|._|I IIIIIII|

® same will happen for centralised tasks L

(eventually) 1 08 -06 04 02 0 02 04 06 08 1
BDT score of the photon ID

Centralised task (in online or offline reconstruction) LR | europesn
Analysis-specific task (by users on local computing erc oo
infrastructures) 35
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Example: Mu for Higgs discovery

® We were not supposed to discover the Higgs boson as early as 2012

® Given how the machine progressed, we expected discovery by end 2015 /mid
2016

® We made 1t earlier thanks (also) to Machine Learning

%) = - —
: b S ok
- —— BDT v classifier > 10— ifi
D o6l 8 - BDT v classifier
wn - 7 u
= - rule-based y selector - ol
L — — Rule-based v selector
) n
Q 24— O _
QO | L —
= u L 8
> - - —
- c '
- o L
2— © 6—
| 8 -
__ '_ 5— .......................................
1.8_ = B
W |
B © n
1.6— (- N
_lllIIIlllIIll|Illl|IIIl|llll|llll|llll|llll|lll 3:I—Il|llIIIllllIIIllilllI|llll|llll|llll|llll|lll
110 115 120 125 130 135 140 145 150 110 115 120 125 130 135 140 145 150
Higgs Mass (GeV) Higgs Mass (GeV)
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HLAML: FPGAH detalls

Xilinx Vivado 2017.2

Results are slightly different in other versions of Vivado
e.g. 2016.4 optimization is less performant for Xilinx ultrascale FPGAS

Clock frequency: 200 MHz
Latency results can vary (~10%) with different clock choices

FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)

Results are slightly different in other FPGAS
e.g. Virtex-7 FPGAs are slightly differently optimized
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