

CEPC Higgs Combination

Zhang Kaili¹, Cui Zhenwei², Wang Jin³, Liu Zhen⁴

- 1.Institute of High Energy Physics
- 2. Peking University
- 3. University of Sydney
- 4. University of Pittsburgh

Workshop on the Circular Electron Positron Collider 2018.05.25 Rome

OUTLINE

Why and How we do combination

• $H \rightarrow \mu\mu$ study

• Results of $\sigma(ZH)$ * Br

• κ Framework

Summary

Why Combination?

- Uniformed, simultaneous statistical framework
 - Get likelihood scan result

Robust & Reliable;

- Correctly consider the correlations between individual channels
 - bb/cc/gg;
 ZH bkg;
 WW fusion; width.....
- Extensibility
 - systematic uncertainties, theoretic assumptions.....
- Currently, with MC sample (always $\mu = 1$)
 - Build Asimov(1007.1727) data from signal and bkg spectrum
 - To fit the estimated precisions of $\sigma * Br$, and κ .
 - Calculation like Significance / Upper limit also obtained;
 - Can do more with observed data in the future.
 - Results shown in Layout=CEPC_v1, ECM=250GeV, B=3.5T.

Fit techniques

- Input: Various. binned/unbinned, 1d/2d spectrum used.
- Parameter of interest: $\sigma * Br$, Higgs coupling κ
 - $N_{total} = \mu * S + B$, $\mu = \sigma * Br = \frac{\kappa \kappa}{\Gamma}$ and share the same relative uncertainty;
- Nuisance parameter: Represents systematic uncertainties
 - $\sigma(ZH)$: 0.5%; $\sigma(Lumi)$: 0.1%; more NPs can be introduced in the future.
 - currently results are all determined by statistical uncertainty.
- PDF: To describe the shape of the spectrum.
 - signal: Double sided Crystal ball; bkg: 2rd-order poly exponential.
 - RooHistPdf/RooKeysPdf used for some channels;
- Algorithm: Likelihood Scan
 - Asymmetric result, from Minuit2; $\pm 1\sigma$ deviation from profile likelihood

Fit techniques

- For each channel
 - Input observables from MC sample.
 - Build combined S+B Pdf

$$Tot = N_{bb} * Pdf + N_{cc} * Pdf_{cc} + \dots + N_{bkg} * Pdf_{bkg}$$

• For event number N_{bb}:

• When measure
$$\sigma * Br$$
,

$$N_{bb} = N_{bb SM} * \mu_{bb}$$

N_{bb_SM} directly from event yield (5ab-1)

$$N_{bb} = N_{bb_SM} * \frac{Br}{Br_{SM}} * \frac{\sigma(ZH)}{\sigma(ZH)_{SM}}$$

$$\Delta \big(\sigma(ZH)\big) = 0.50\%$$

• When measure
$$\kappa$$
,

$$N_{bb} = N_{bb SM} * \kappa_z^2 (\kappa_w^2) * \kappa_b^2 / \Gamma_H$$

• Channel share the same
$$\mu$$
s.

$$Z \rightarrow ee, \mu\mu, qq, \nu\nu$$
, share the same μ_{hh}

and the Pdf shape fixed all the time.

- Use Combined pdf to make Asimov data
- Scan the likelihood and obtain the 1σ deviation

Channels Table

All channels scaled to 5ab⁻¹

Sig	nal	Dracisian	Sig	nal	Dracicion	Sig	nal	Duanisian		
Z	Н	Precision	Z	Н	Precision	Z	Н	Precision		
	H->qq			H->WW			H->ZZ	H->ZZ		
	bb	1.6%		lvlv	9.2%	VV	μμηη	8.2%		
ee	СС	23.6%	ee	evqq	4.6%	VV	eeqq	35.2%		
	gg	13.3%		μνqq	3.9%	μμ	vvqq	7.3%		
	bb	1.1%		lvlv	7.3%	ee	eeqq	35.1%		
μμ	СС	14.8%	μμ	evqq	4.0%	ee	μμqq	23.0%		
	gg	8.0%	μναα		4.0%	ZH bkg contribution		19.4%		
	bb	0.5%		qqqq		VV	on)			
qq	СС	11.9%	107	evqq	4.7%	VV	bb	3.1%		
	gg	3.9%	VV	μνqq	4.2%	Η→μμ				
	bb	0.4%		lvlv	11.3%	qq				
VV	СС	3.9%	qq	lvqq	2.2%(ILC)	ee		15.9%		
	gg	1.5%	ZH bkg co	ntribution	3.0%	μμ	μμ	15.9%		
	Η→ττ			H → γγ, Ζγ		VV				
ee		2.8%	μμ+ττ		41.0%	H->Inv	visible	Br, Upper		
μμ		2.8%	VV	γγ	13.7%	qq		0.8%		
qq	ττ	1.0%	qq		10.3%	ee	ZZ(vvvv)	0.6%		
VV		3.1%	VV	Ζγ(qqγ)	21.2%	μμ		0.6%		

Treatment for ZH bkg

- In individual analysis, other ZH processes are tagged as bkg;
 - Signal in one channel can be bkg for another channel.
 - Should taken into account in combination.
 - $Z \rightarrow \mu\mu$, $H \rightarrow \tau\tau$, the main bkg is $H \rightarrow WW$.
 - These WW events should be considered in μ_{WW} .
 - Standalone WW channel 1.2% improved to 1.0% this way;
 - Combined fit for H->bb/cc/gg/ww/zz hadronic decay, Fully correlated.

Correlation: $vvH \rightarrow bb$

- 2d fit M_{jj}^{reco} & $Cos \theta_{jj}$
- Correlated with ZH process;
 - Fix ZH process, Initial error is 2.89%.
 - But must consider the uncertainty from ZH process.
- Use the likelihood from $Z \to ee/\mu\mu/qq$, $H \to bb$ to constrain
 - Already have the form of μ_{ZH} , no assumption made;
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -46%. (-34% in ILC(1708.08912))
- Simultaneous Fit 3.1%; consistent with individual study 3.1%.
 - Corresponding to this, $ZH \rightarrow bb$ precision 0.33%.
 - $\sigma(vvH)$ precision 3.16%.

Correlation: Higgs width

In Pre_CDR, width determined by

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)} \text{ and } \Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to bW)}$$

- If two independent: 2.83% (consistent with pre_CDR, which gives 2.8%)
- But width correlated with all channels
 - Like correlation like $vvH \rightarrow vvbb$ and $ZH \rightarrow bb$ -46% not included -> would worse the result
- Combined fit in 10κ framework:

$$\Delta(\Gamma_H) = 3.2\%$$

$H\rightarrow \mu\mu$, 3.5T, Full simulation

• Z->ee

bkg shape all after smoothing. (10~100x bkg events used)

Cutflow	signal	ZZ	WW	ZZorWW	SingleZ	2f
Init	4.7	18	0	9	22672	8
$120 < M_{\mu^+\mu^-} < 130$	4.3	0	0	0	747	0
$120 < M_{\mu^+\mu^-} < 130$ $89 < M_{reco}^{\mu^+\mu^-} < 94$	3.0	0	0	0	56	0
$138 < E_{\mu+\mu-} < 140$	2.2	0	0	0	8	0
efficiency	46.81%					

Bkg: Sz(I)e.l0mu;

- Z->mm combination to minimize $\delta = (\frac{pair1.M}{\Delta Z})^2 + (\frac{pair2.M}{\Delta H})^2$
 - $\Delta Z = 1.5, \Delta H = 0.75$

Category	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
Preselection	6.6	17631.0	0	0	0	0.0
$120 < E_{\mu^+\mu^-} < 130$	6.0	1685.2	0	0	0	0.0
$90.6 < M_{recoil_{\mu}} < 93.4$	3.9	128.8	0	0	0	0.0
$90.2 < M_{\mu^+\mu^-}(Z) < 92.8$	3.2	58.1	0	0	0	0.0
$cos_{\mu^+\mu^-}(H) < -0.603$	3.2	50.0	0	0	0	0.0
$cos_{\mu^{+}\mu^{-}}(Z) < -0.364$	3.2	47.0	0	0	0	0.0
$138.0 < E_{\mu^+\mu^-}(H) < 139.8$	3.0	15.5	0	0	0	0.0
$P_{T_{\mu^{+}\mu^{-}}}(H) < 62.5$	3.0	14.7	0	0	0	0.0
efficiency	45.5%					

Bkg: ZZ(I).4mu;

ZH \rightarrow ννμμ, $qq\mu\mu$

Z->vv38%

Cutflow	signal	ZZ	WW	ZZorWW	SingleZ	2f
Init	41.7	34901	121952	489686	25619	1635887
$120 < M_{\mu^+\mu^-} < 130$	38.4	382	16677	56029	315	49490
$MET_{\dot{c}}8.5$	37.9	291	16264	53740	305	8600
$89 < M_{reco}^{\mu + \mu -} < 94$	28.1	96	834	2034	79	184
$\cos \theta_{\mu_+} > 0, \cos \theta_{\mu} - 0$	9.1	22	11	86	17	9
efficiency	21.82%					

Z->qq17%

Cutflow	signal	ZZ	WW	ZZorWW	SingleZ	2f
Init	156.3	390775	183751	463361	101164	63217
$120 < M_{\mu^+\mu^-} < 130$	141.6	3786	181	227	244	100
$M_{j1} > 4.2, M_{j2} > 2.8$	133.0	3216	111	0	9	60
$M_{jj} > 76.0$	127.5	2917	2	0	8	59
$89 < M_{reco}^{\mu + \mu -} < 94$	86.1	1106	0	0	0	0
efficiency	55.08%					

Combined:15.9%

Main bkg: ZZ(sl)mu.down, ZZ(sl)mu.up

Considering the scheduled time, CEPC could be the first detector to see this process.

$qq\mu\mu$, 3T & 3.5T, full simulation

Events normalized, no significant difference in mean value and resolution.

$Z \rightarrow qq$, $H \rightarrow \mu\mu$

Comparison

3T: 18.6%

Events / (0.1

3.5T: 17.4%

when the magnet field reduced,

- 2.8% signal, 4% bkg events would be lost in reconstruction.
- 3.1% signal, 4% bkg events would fail in preselection. (Good muon selection)
- -> Signal: 81; Bkg: 1006;

Considering these, precision has reduced from 17.4% to 18.6%.

There is a slight performance downgrade from 3.5T to 3T.

Fit result of $\sigma(ZH) * Br$

(5ab ⁻¹)	Pre_CDR	Current 2018.5	ILC 250	Fcc-ee
σ(ZH)	0.51%	0.50%	1.2%	0.40%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.28%	0.6%	0.2%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.5%	3.9%	1.2%
$\sigma(ZH) * Br(H \to gg)$	1.6%	1.4%	3.3%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.0%	3.0%	0.9%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.0%	8.4%	3.1%
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	0.8%	2.0%	0.7%
$\sigma(ZH) * Br(H \to \gamma \gamma)$	9.0%	8.1%	16%	3.0%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	16%	46.6%	13%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	3.1%	11%	2.4%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%	0.4%	0.50%
$\sigma(ZH) * Br(H \to Z\gamma)$	\	4σ(21%)		

ILC: 1310.0763 FCC-ee: 1308.6176

14

Difference from Pre CDR

(5ab ⁻¹)	Pre_CDR	Combined
$\sigma(ZH)$	0.51%	0.50%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.28%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.5%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.0%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.0%
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	0.8%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	8.1%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	16%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	3.1%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%
$\sigma(ZH) * Br(H \to Z\gamma)$	\	4σ(21%)

- CrossSection: minor update.
- bb,cc,gg: due to flavor tagging algorithm, The template gives b/c likeness, updated algorithm has less cc candidate events left.
- WW: more subchannels studied and ZH bkg contribution.
- ZZ: the extrapolation in Pre_CDR from FCC-ee too optimistic.
- $\tau\tau$: τ finding algorithm updated.
- $\gamma\gamma$: different estimation from full/fast simulation.
- *vvH*: consider the correlation
- $H \rightarrow invisible$: Pre_CDR studied an exotic decay $H \rightarrow \chi_1 \chi_1$ and assuming 200fb⁻¹, gives 0.28%.
- Now we study the upper limit of $H \to ZZ \to \nu\nu\nu\nu$.

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$$

- Model independent implication
 - Detector's benchmark;

Constrain to new physics models;

- In CEPC
 - We have $\sigma(ZH) = 0.5\%$

constrain $\sigma(\kappa_z) < 0.25\%$.

For Production,

ZH & WW fusion process,

all contribute to κ_Z^2 ; κ_W^2 ;

For Partial decay,

no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_h^2 , κ_c^2 , κ_a^2 , κ_τ^2 , κ_V^2 , κ_μ^2 ,

For Total width Γ_H . $\Gamma_H = \Gamma_{SM} + \Gamma_{RSM}$.

If we assume no exotic decay,

 Γ_{SM} can be resolved as:

all κ correlated this way;

 $\Gamma_{SM} = 0.2137 \kappa_W^2 + 0.02619 \kappa_Z^2 + 0.5824 \kappa_D^2 + 0.08187 \kappa_q^2 + 0.002270 \kappa_V^2 + 0.06294 \kappa_\tau^2 + 0.02891 \kappa_c^2$

• $Z \to \mu\mu$, $H \to \tau\tau$ channel, the signal will be $\kappa_Z^2 \kappa_\tau^2 / \Gamma_H$; For $\nu\nu H \to bb$, it's $\kappa_W^2 \kappa_h^2 / \Gamma_H$

Fit result of κ

In different interpretation, Higgs width can be independent or resolved by branch ratio.

	10κ	Pre_CDR	7ĸ	Pre_CDR
κ_b	1.6%	1.3%	1.0%	1.2%
$\kappa_{ m c}$	2.3%	1.7%	2.1%	1.6%
κ_{g}	1.6%	1.5%	1.2%	1.5%
κ_{γ}	4.4%	4.7%	4.3%	4.7%
$\kappa_{ au}$	1.6%	1.4%	1.1%	1.3%
$\kappa_{ m Z}$	0.21%	0.26%	0.17%	0.16%
κ_{W}	1.4%	1.2%	1.0%	1.2%
κ_{μ}	8.1%	8.6%		
Br_{inv}	0.42%	0.28%		7κ , we assum decay $\Gamma_{\!BSM}$
$\Gamma_{\!H}$	3.3%	2.8%	• Drop Br_{ir} • κ_{μ} = κ_{τ}	

Integration to HL-LHC

18

The improvement of κ_γ	from	Br_{ZZ}	$I_{Br_{\gamma\gamma}}$	=	4%
------------------------------------	------	-----------	-------------------------	---	----

	10-pa	rameter fit	7-par	ameter fit
	CEPC	+HL-LHC	CEPC	+HL-LHC
Γ_h	3.2	2.5	_	_
κ_b	1.6	1.2	1.0	0.9
κ_c	2.3	2.0	2.1	1.9
κ_g	1.6	1.2	1.2	1.0
κ_W	1.4	1.1	1.0	0.9
$\kappa_{ au}$	1.6	1.2	1.1	1.0
κ_Z	0.21	0.21	0.17	0.16
κ_{γ}	4.4	1.7	4.3	1.7
κ_{μ}	8.1	4.9	_	_
BR_{inv}	0.31	0.31	_	_

ATL-PHYS-PUB-2014-016

*: here Br_{inv} for BSM.

Compared to ILC(1710.07621)

ILC used more aggressive κ_{γ} , by ratio ${}^{Br_{ZZ}}/_{Br_{\nu\nu}}=2\%$

Correlation of κ

For each entry, upper one is CEPC result lower one is CEPC+HL-LHC result.

7-parameter fit Correlation

10-parameter fit Correlation

- 1												
	K _b	-	100.	-4.4 -4.2	-7.6 -6.1	-19. -19.	4.2 4.2	78. 77.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-92. -91.
	K_C	-	-4.4 -4.2	100.	–19. –18.	-9.3 -8.6	2.3 2.2	-6.1 -5.7	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	2.7 2.5
	K_g	-	-7.6 -6.1	–19. –18.	100.	-25. -19.	9.2 7.4	3.2 8.7	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-5.8 -13.
	KW	-	–19. –19.	-9.3 -8.6	-25. -19.	100.	-22. -21.	-6.9 -7.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	5.7 5.5
	$K_{\mathcal{T}}$	_	4.2 4.2	2.3 2.2	9.2 7.4	-22. -21.	100.	25. 24.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-31. -31.
	K_Z	-	78. 77.	-6.1 -5.7	3.2 8.7	-6.9 -7.8	25. 24.	100.	2.8 -4.7	1.5 -0.61	<0.1 <0.1	-83. -83.
	K_{γ}	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	2.8 -4.7	100.	<0.1 <0.1	<0.1 <0.1	-3.4 -1.3
	κ_{μ}	_	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	1.5 -0.61	<0.1 <0.1	100.	<0.1 <0.1	-1.8 -1.1
	Br _{inv}	_	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	100.	<0.1 <0.1
	κ_{Γ}	-	-92. -91.	2.7 2.5	-5.8 -13.	5.7 5.5	-31. -31.	-83. -83.	-3.4 -1.3	-1.8 -1.1	<0.1 <0.1	100.
			K _b	K _C	Kg	KW	K _T	K_Z	K_{γ}	κ_{μ}	Br _{inv}	КГ

Summary

	Current
σ(ZH)	0.50%
$\sigma(ZH)*Br(H\to bb)$	0.28%
$\sigma(ZH)*Br(H\to cc)$	3.5%
$\sigma(ZH)*Br(H\to gg)$	1.4%
$\sigma(ZH)*Br(H \to WW)$	1.0%
$\sigma(ZH)*Br(H\to ZZ)$	5.0%
$\sigma(ZH)*Br(H\to\tau\tau)$	0.8%
$\sigma(ZH)*Br(H\to\gamma\gamma)$	8.1%
$\sigma(ZH)*Br(H\to\mu\mu)$	16%
$\sigma(vvH) * Br(H \to bb)$	3.1%
$Br_{\rm upper}(H \to inv.)$	0.42%
$\sigma(ZH)*Br(H\to Z\gamma)$	4σ(21%)

	10 κ	7 κ
κ_b	1.6%	1.0%
κ_{c}	2.3%	2.1%
κ_{g}	1.6%	1.2%
κ_{γ}	4.4%	4.3%
$\kappa_{ au}$	1.6%	1.1%
$\kappa_{ m Z}$	0.21%	0.17%
$\kappa_{ m W}$	1.4%	1.0%
κ_{μ}	8.1%	
Br_{inv}	0.42%	
$\Gamma_{\!H}$	3.2%	

	10-pa	rameter fit	7-par	7-parameter fit	
	CEPC	+HL-LHC	CEPC	+HL-LHC	
Γ_h	3.2	2.5	_	_	
κ_b	1.6	1.2	1.0	0.9	
κ_c	2.3	2.0	2.1	1.9	
κ_g	1.6	1.2	1.2	1.0	
κ_W	1.4	1.1	1.0	0.9	
$\kappa_{ au}$	1.6	1.2	1.1	1.0	
κ_Z	0.21	0.21	0.17	0.16	
κ_{γ}	4.4	1.7	4.3	1.7	
κ_{μ}	8.1	4.9	_	_	
R_{inv}	0.31	0.31	_	_	

- Updated fit results of CEPC Higgs are shown.
- Correlations are taken in consideration in the simultaneous framework.
- To be used in the CDR and white paper.

backup

Individual analysis

bb/cc/gg

$$B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$$

- Template fit: Flavor tagging algorithm
 - $Z \rightarrow ee \mu\mu qq vv$, $H \rightarrow bb/cc/gg$ are studied.
 - 2D fit, with dijets' b/c likeness; mass info not used;
 - 7 parts, Tot=bb+cc+gg+ww+zz+tt+bkg_{sm}.
 - Build individual pdf by MC, then fit to determine fraction.
 - the shape of bkg is fixed.
 - · Which means we have a wonderful understanding with bkg,
 - · may be more suitable for CEPC.
 - ToyMC test to get precision
 - Now plan to use 3d fit in IIH;
 - Systematic uncertainties ongoing;

Scan	μ_bb	µ_сс	μ_gg
ееН	1.3%	15.0%	8.2%
mmH	1.0%	11.3%	5.5%
qqH	0.5%	17%	7.2%
vvH	0.4%	3.9%	1.6%
Combined	0.28%	3.48%	1.44%

	preCDR	Now
ττ	1.2%	0.81%

- Pre_CDR concludes the precision 1.2% but no description.
- Develop LICH to identify lepton. Eff>99%
- Signal and ZH events(Main WW) share the same shape
 - use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal
 - Impact parameter, Distance from beam spot

	BR (H $\rightarrow \tau\tau$)	$\delta (\sigma \times BR)/(\sigma \times BR)$
$\mu\mu H$	6.40	2.68%
eeH(extrapolated)	6.37	2.72%
$\nu\nu H$	6.26	4.38%
qqH	6.23	0.93%
combined	6.28	0.81%

 preCDR
 Now

 WW
 1.5%
 1.0%

Currently have 17 channels of WW

Sig	nal	Duosision
Z	Н	Precision
	H->WW	
	lvlv	9.2%
ee	evqq	4.6%
	μνqq	3.9%
	lvlv	7.3%
μμ	evqq	4.0%
	μνqq	4.0%
	qqqq	2.0%
	evqq	4.7%
VV	μνqq	4.2%
	lvlv	11.3%
qq	lvqq	2.2%(ILC)
ZH bkg co	ntribution	3.0%

Green: studied

	Z	ee	μμ	vv	qq
ww	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μν+qq				
	qq+qq				

	preCDR	Now
ZZ	4.3%	5.0%

Channel	Precision	Comment
$\sigma(Z(\nu\bar{\nu})H + \nu\bar{\nu}H) \times BR(H \to ZZ)$	6.9%	CEPC Fast Simulation
$BR(H o ZZ^*)$	4.3%	Extrapolation from FCC-ee [36]

• Pre_CDR's result from extrapolating the FCC-ee.

Now has 5 channels clear and easy to study

C:-			
Sig	Signal		
Z	Н	Precision	
	H->ZZ		
VV	μμαα	8.2%	
VV	eeqq	35.2%	
μμ	vvqq	7.3%	
ee	eeqq	35.1%	
ee	μμαα	23.0%	
ZH bkg co	ntribution	19.4%	

Green: studied

	Z	ee	μμ	vv	qq
ZZ	ee+qq				
	μμ + qq				
	vv+qq				
	+				
(Invi)	vv+vv				
	qq+qq				
	II+vv				

Sig	Precision	
Z	Z H	
μμ+ττ		24.8%
VV	γγ	11.7%
qq		12.8%

$H \rightarrow invisible$

preCDR Now

invisible 0.28% 0.42%

- Moxin studied H->ZZ->vvvv
 - Large irreducible bkg, use BDT and seek upper limit.
 - Huge fluctuation, use Asimov Data to get correct fit result.
 - precision 148%, upper limit for Br: 0.42%
 - Upper limit for BSM H->invisible: 0.31%

	Precision	significance	Br Upper limit
Z->ee	350%		0.84%
Z->mm	242%		0.62%
Z->qq	226%		0.59%
Combined	148%	0.68σ	0.42%

18/5/25 Kaili Zhang

$Z\gamma$

- $Z \rightarrow qq$, $H \rightarrow Z\gamma \rightarrow qq\gamma$ studied;
 - Pre_CDR not conclude;
 - Take $m_{Z\gamma-Z}$ as observable;
 - 4σ significance; Precision about 21%.

- *e*μ, *ee* process studied.
 - Since low stats and no clear ratio, not taken into fit model.