

Development of high granularity pixel sensors for CEPC Vertex Detector

CEPC workshop - EU edition 2018.5.25

<u>Yang ZHOU¹</u>, Yunpeng Lu¹, Zhigang Wu^{1,2}, Xudong Ju¹, Jing Dong¹, Qun Ouyang^{1,2}

 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, CAS, Beijing, 100049
University of Chinese Academy of Sciences

Outline

Introduction and challenges of the vertex detector for CEPC

- **D** Specifications and design goal
- * Two high granularity Pixel sensor prototypes: *with in-pixel digitization*
 - □ JadePix2 in CMOS technology
 - **CPV** (Compact Pixel sensors for the Vertex detector) in SOI technology
- Summary and outlooks
- Acknowledgement

Vertex detector general specifications

Vertex detector:

- Inner most detector:
 - high flux density;
- Reconstruct the charm & bottom particle decay vertex:
 - Precise spatial & time resolution;
 - Thin (minimize scattering effect);
 - Low power consumption (simplify cooling system).

Vertex detector general specifications

• General requirements of vertex detector:

High granularity, fast processing speed, thin pixel sensors with low power consumption

Some characters of promising technologies:

- 100% fill-factor
- Miniaturized: sensor and signal processing integrated in the same silicon wafer
- Low cost: standard commercial technology
- Low power dissipation: monolithic sensor
- Almost dead time free: very short reset time
- Sensitive: low noise; (signal collected by the sensing diode as low as $200 e^{-}$)
- High granularity: pixel pitch on the scale of several tens of μm

High granularity is beneficial for both high flux and precise spatial resolution

Technology options

CMOS technology: TowerJazz 0.18 µm CIS process for example

- Quadruple well process, deep PWELL shields NWELL of PMOS: full in-pixel CMOS
- Thick (~20 μ m) and high resistivity ($\geq 1 \ k\Omega$ •cm) epitaxial layer: more depletion
- *Thin gate oxide (<4 nm): robust to total ionizing dose*

- Latest Mimosa series @ IPHC for STAR
- > ALPIDE @CERN for ALICE upgrade

Technology options

SOI: LAPIS 0.2um process

- Fully depleted sensor
- Full in-pixel CMOS
- 5 Metal layers
- High resistive substrate ($\geq 1 \text{ k}\Omega \cdot \text{cm}$).
- Could be back thinned down to 75 μ m

SOFIST@KEK for ILC pre-R&D

<u>Part 1: Introduction and challenges of the vertex detector for CEPC</u> Challenges of the vertex detector for CEPC

• Efficient tagging of heavy quarks (b/c) and τ leptons

$$\sigma_{\rm r\phi} = a \oplus \frac{b}{p(GeV)\sin^{3/2}\theta} \,(\mu m)$$

a depends on single point resolution $\sigma_{s.p.}$ & on the lever arm b depends on the distance between the innermost layer to IP and on the material budget

- to achieve a=5 and b=10 (B=3.5T):
 - Single point resolution near the IP: $\leq 3 \ \mu m \rightarrow high \ granularity$
 - material budget: ≤ 0.15%X₀/layer → Low power dissipation, thinned, monolithic pixel sensor (50µm thick, <50mV/cm²?)
 - pixel occupancy: $\leq 1\%$ \rightarrow High granularity & fast processing speed($<20\mu$ s/frame ?)
 - Radiation tolerance: ~1 Mrad/y (TID) and ~ 10^{13} N_{eq}/cm²/y (NIEL)

Challenges of the vertex detector for CEPC

Name	Structure	Pixel pitch (µm ²)	Integ.time (µs)	Power density (mW/cm ²)	Spatial resolution
MISTRAL (IPHC)	Column-level comparator, Rolling-shutter	22 × 33	30	200	
ASTRAL (IPHC)	In-pixel comparator, Rolling-shutter	22 × 33	20	85	$\approx 5 \mu m$
ALPIDE (CERN,IN FN,CCNU ,YONSEI)	In-pixel comparator, Global-shutter	27 x 29	2	39	

Part 1: Introduction and challenges of the vertex detector for CEPC Design goal: to reach $\sigma_{sp} < 3 \ \mu m$

Spatial resolution vs pitch obtained from Mimosa sensors *

*J. Baudot; Fully depleted CMOS Pixel Sensors: developments and applications; ANIMMA 2015, Lisbon, 20-24 April 2015.

+J.Baudot, "An ILD vertex detector with CMOS sensor -status report", in Linear Collider Power Distribution and Pulsing workshop, LAL Orsay, May 2011.

Outline

Challenges of the vertex detector for CEPC

High granularity Pixel sensor prototype:

- □ JadePix2 in CMOS technology
- **CPV** in SOI technology
- Summary and outlooks

JadePix2 in CMOS technology

JadePix2: joint 0.18 µm CMOS process MPW submission with IPHC in May. 2017

Layout of JadePix2

Layout of a single pixel in JadePix2

- $-3 \times 3.3 \text{ mm}^2$;
- -96×112 pixels with 8 sub-matrix
- Processing speed: 11.2 µs/frame for 80 ns/row;
- Output data speed: 160 MHz;
- Power:3.7 μA/pixel;

JadePix2: in-pixel structure and operation timing

2 pixel versions were proposed in JadePix2:

Version 1: differential amplifier + latch

Operation timing of pixel version 1

Version 2: two stage CS amplifiers + latch

Operation timing of pixel version 2

JadePix2: sensing point

equivalent C on the sensing point:

Table: some details for both of the 2 versions with different "Bias voltage" and "diode size"

	Diode size (µm²)	Diode Bias (V)	Equivalent C, including AMP input transistors (fF)	Parasitic C (fF)	Total sensing point C (fF)	CVF on the sensing diode (µV/e ⁻)	CVF after 1 st AMP (µV/e ⁻)	"Best case"
Version 1	4	8	3.53 fF	0.786 fF	4.316 fF	37	303	
Version 2	4	1	6.32 fF	0.670 fF	6.99 fF	22.9	187.3	
		8	4.39 fF		5.06	31.7	250 🖌	
	8	1	8.13 fF		8.80	18.2	143.8	
		8	5.37 fF		6.04	26.5	209.4	

JadePix2: performances of the in-pixel amplifiers

Version 1: first stage AMP transient noise (sensing part was not included)

Differential Amplifier Noise simulation: Input DC level: 600 mV Biasing current: 3.7 µA Gain: 8.3 RMS noise: 1.962 mV

ENC: \approx 7 e⁻ (for best case; highly relayed on the equivalent C_{sensing point})

Version 2: first stage AMP transient noise (sensing part was not included)

Single-end CS Amplifier Noise simulation: Input DC level: 520 mV Gain: 8 RMS noise: 1.566 mV ENC: 6.3 e- (for best case)

JadePix2: offsets of the in-pixel amplifiers

Figure 6: Monte Carlo Simulation of the pixel version2, first stage Amp. offset (process variation + mismatch): input point (left) and outpoint (right).

offset in "best case"	RMS	ENC
AMP input side	379.3 μV	12 e ⁻
AMP output side	5.028 mV	20 e-

Simulation results show the offsets of the amplifiers are significant, thanks to the in-pixel offset cancellation stage, these offsets are cancelled in the in-pixel CDS process.

JadePix2: offset of the dynamic Latch

Offset caused by the dynamic Latch:

Monte Carlo Simulation of the dynamic Latch offset : process variation + mismatch

JadePix2

Test of JadePix2 is still ongoing......

Outline

Challenges of the vertex detector for CEPC

Specifications and design goal

High granularity Pixel sensor prototype:

JadePix2 in CMOS technology

CPV in SOI technology

Design

Test results about: CVF, noise, single point resolution results...

Summary and outlooks

CPV in SOI technology

SOI/CMOS technology: concerning granularity

Thicker sensitive layer: simplify the electronic design

granularity

- 2-3 times signal charges for Minimum Ionizing Particles (MIP) even after the sensor back thinning down to \approx 50 μm

More compact layout: *shrink the pixel size*

- PMOS & NMOS transistor could be closer (no NWELL PWELL used for transistors in SOI)

Design of CPV1

- First digital pixel of 16um pitch size
- CS voltage amplifier, gain ~ 10
- Inverter as discriminator
- Threshold charge injected to sensing node
- Pixel array: 64*32 (digital) + 64*32 (analog)
- Double-SOI process for shielding and radiation CP enhancement
- Submitted June, 2015

CPV1 prototype layout: $3 \times 3 mm^2$

Design of CPV2

- Protection diode added
 - Enable full depletion on sensor
- In-pixel CDS stage inserted
 - improved RTC and FPN noise
 - replaced the charge injection threshold
- Sensor thickness was thinned to 75 μm
- Submitted June, 2016

CPV2 digital pixel layout

Pixel schematic of CPV2

CPV2 test: fully depleted ⁵⁵Fe signal Efficiency versus bias voltage x-ray illuminates the sensor from backside CPV2 - plateau reached $@V_{\text{bias}} = -40V$ 75um An evidence of fully-depleted sensor chip 7000 tunos ⁵⁵Fe source 6000 5000 $\int u e^{-us} ds = e^{-uh} (e^{u\xi \bullet \sqrt{V}})$ $\eta =$ 4000 partly depleted 3000 $\int u e^{-us} ds = 1 - e^{-uh}$ 2000 fully depleted 1000 -200 -150 -50 -100Vbias/V 21 **CEPC** workshop - EU edition 2018.5.25

Part 2: High granularity Pixel sensor prototype

CPV2 test: CVF calibration

- Charge voltage factor (CVF)
 - ⁵⁵Fe 5.9KeV X-ray@1640e⁻
 - SF gain measured 0.87
 - Most probable signal amplitude around 180ADC in single pixel mode
 - A peak at 360ADC in 3×3 pixel cluster mode
 - CVF: $123.3\mu V/e^{-}$ @source follower input

CPV2 test: Noise performances

- Temporal noise and FPN
 - S-curve measured on full pixel array
 - TN: ~6е⁻

300

250

100

50 F

0 0

200 pixel numbers

- FPN:~114e-; need to be improved.

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

temporal noise [V]

1991

0.0007141

0.0003154

0.0006986

0.0002894

330.5

Entries

Mean

RMS

Mear

Siama

Constant

CPV2 single point resolution measurement: experiment setup

- 1064nm laser beam
 - optical lens to focus laser
- 3-dimensional stepping motor
 - accuracy: 0.1μm
- Thinning chip
 - wire-bonding on sub-board
 - illuminate from backside (no aluminum)

CPV2 single point resolution measurement: laser beam

Timing

- Triggered by the frame start signal
- Synchronized with rolling shutter readout
- Focusing with analog pixel as a monitor
 - Achieve the smallest beam cluster
 - Calibrate the equivalent electron number of laser energy

before focusing

CPV2 single point resolution measurement: laser scan

• Scan two adjacent digital pixels pixel0 pixell - Step size of 1µm - Threshold is fixed (no noise hits) normalized response 9.0 9.7 8.0 pixel0 pixel0 pixell pixell Signal charge Signal charge Normalized response 0.2 0.2 = 1574e⁻ = 2308e⁻ =number of hit/number of pulse 8 10 12 14 16 18 20 22 0^L 18 20 22 2 10 12 14 16 18 20 position[um] 2 4 6 4 6 8 position[um] normalized response normalized response 9.0 9.0 9.0 pixel0 pixell pixell pixel0 Signal charge Signal charge = 3148e⁻ = 4722e⁻ 0.2 0.2 6 8 10 12 14 16 18 20 22 0^L 10 12 14 16 18 position[um] 2 4 6 8 20 10 12 14 16 18 20 position[um] 22 2 4 6 8

CEPC workshop - EU edition

laser scan

direction

CPV2 single point resolution laser measurement results

- Actual position decided by motor
- Responding position reconstructed by Center of Gravity

CPV2 single point resolution laser measurement results

- Spatial resolution versus signal level
 - Get the best resolution of $2.3\mu m$ at ~ $3000e^{-1}$ signal level

Summary and outlooks

Some features of The two prototype compares with ASTRAL and ALPIDE:

	ASTRAL	ALPIDE	JadePix2		CPV2	
Process technology		0.18 µm CMOS			0.2 μm SOI	
Readout strategy	Rolling shutter	asynchronous	Rolling shutter			
Readout time	20 µs	<2 µs	100ns/row	or	50ns/row	
			80ns/row			
Power	85 mW/cm^2	39 mW/cm^2				
Pixel size	$22 \times 33 \ \mu m^2$	$27 \times 29 \ \mu m^2$	$22 \times 22 \ \mu m^2$		16 ×16 μm ²	
Spatial resolution		$\approx 5 \mu m$	m Not tested yet		Possibly < 3µm	
Total signal for MIP	≈1600 e ⁻ (≈20µm epi-layer)			≈4000 e ⁻ (back thinning to 50 μ m, fully depleted)		

- Demonstrated that a single point resolution <3µm is possible with the method of integrating 1-bit digitization in each pixel
- Perform the test of JadePix2
- Optimize the performances in the following prototypes
- Characterize more features by beam test: Fake hit rate, detection efficiency, radiation tolerance....

Acknowledgment:

The study of JadePix2 was supported by the National Key Program for S&T Research and Development (2016YFA0400400) and the National Natural Science Foundation of China (11605217);

The study of CPV was supported by the National Natural Science Foundation of China (11575220) and the CAS Center for Excellence in Particle Physics (CCEPP).

Thanks for your attention!