

环形正负电子对撞机 Circular Electron Positron Collider

CEPC Linac Injector

Workshop on Circular Electron Positron Collider 24-26 May, 2018

Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Jie Gao, Shilun Pei, Yunlong Chi

Institute of High Energy Physics, CAS, Beijing

Outline

CEP

- Introduction
 - Main parameters
 - Linac layout
- Source design
 - Electron source
 - Positron source
- Linac design
 - Electron mode
 - Positron mode
- Summary

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Outline

- Introduction
 - Main parameters
 - Linac layout
- Source design
 - Electron source
 - Positron source
- Linac design

Summary

- Electron mode
- Positron mode

- Luminosity is the core and key parameter of the collider
- Integral Luminosity is the fundamental value of the collider
 - T_s is the scheduled operation time
 - η is the **availability**

$$L_{\text{int}} = \int_0^T L(t) dt = \langle L \rangle \cdot T_s \cdot \eta$$

- As the first injector part, high availability of the Linac is very important
 - Beam commission, operation
 - The root of Big tree!

• Linac design goal and principles

• High Availability and Reliability

- ~ 15% backups for Klystrons and accelerating structure, need to study in the future
- Simplicity
 - Layout / S-band accelerating structure (2856.75MHz)
- Always providing beams that can meet requirements of Booster

Workshop on Circular Electron Positron Collider, 24–26 May 2018, Roma, Italy

- The linac should be have potential to meet the higher requirements and updates in the future, which is very likely for mostly accelerators
 - Emittance: smaller than 120 nm
 - **Damping Ring** for positron beam and *layout*
 - Higher transmission
 - Larger errors tolerance
 - Higher injection efficiency, easier injection design
 - Bunch charge: larger than 3 nC
 - Positron production and *layout*
 - 4 GeV electron beam
 - Bunch structure
 - One-bunch-per-pulse
 - short-range Wakefield
 - Two-bunch-per-pulse is possible for linac, but should be carefully considered in DR

Positron Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 10nC for positron production

Layout of Linac

Positron Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 10nC for positron production
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 10nC for positron production

Layout of Linac

Positron Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 11nC for positron production
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 10nC for positron production
- PSPAS (Positron Source and Pre-Accelerating Section)
 - Positron beam larger than 200 MeV && larger than 3 nC

Layout of Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 11nC for positron production
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 10nC for positron production
- PSPAS (Positron Source and Pre-Accelerating Section)
 - Positron beam larger than 200 MeV && larger than 3 nC

- SAS (the Second Accelerating Section)
 - Positron beam to 4 GeV && 3 nC
- DR (Damping Ring)
 - Positron beam 1.1GeV, 60m

Layout of Linac

- ESBS (*Electron Source and Bunching System*)
 - 50 MeV && 11nC for positron production
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 10nC for positron production
- PSPAS (Positron Source and Pre-Accelerating Section)
 - Positron beam larger than 200 MeV && larger than 3 nC

- SAS (the Second Accelerating Section)
 - Positron beam to 4 GeV && 3 nC
- DR (Damping Ring)
 - Positron beam 1.1GeV, 60m
- TAS (the Third Accelerating Section)
 - Positron beam to 10 GeV && 3 nC

Layout of Linac

Electron Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 3 nC

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Layout of Linac

Electron Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 3 nC
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 3 nC

Layout of Linac

- ESBS (*Electron Source and Bunching System*) EBTL (*Electron Bypass Transport Line*)
 - 50 MeV && 3 nC
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 3 nC

Electron beam @ 4 GeV && 3 nC

Introduction Layout of Linac Electron Linac EBTL ESBS FAS

• ESBS (*Electron Source and Bunching System*) • EBTL

4Ge\

• 50 MeV && 3 nC

50MeV

- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 3 nC

- EBTL (Electron Bypass Transport Line)
 - Electron beam @ 4 GeV && 3 nC

4GeV

- TAS (the Third Accelerating Section)
 - Electron beam to 10 GeV && 3 nC

10Ge

Layout of Linac

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Layout of Linac

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Outline

CEP

- Introduction
 - Main parameters
 - Linac layout
- Source design
 - Electron source
 - Positron source
- Linac design
 - Electron mode
 - Positron mode
- Summary

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

- Thermionic electron gun
- Sub-harmonic pre-buncher
 - 142.8375 MHz
 - 571.35 MHz
- Buncher & A0
 - 2856.75 MHz
- Focusing structure
 - Solenoid
- Emittance
 - <100 mm-mrad (Norm.Rms)</p>
- Transmission
 - ~90%

Workshop on Circular Electron Positron Collider, 24–26 May 2018, Roma, Italy

Positron source

- Target (Conventional)
 - tungsten@15 mm
 - Beam size: 0.5 mm
- Energy deposition
 - 0.784 GeV/e- @ FLUKA
 - 784 W \rightarrow water cooling
- Electron beam
 - 4GeV
 - 10nC/bunch (maybe lower)
 - Beam power: 4 kW

Positron source

CEP

- Layout of positron source
 - AMD (Adiabatic Matching Device)
 - Length: 100mm
 - Aperture: 8mm→26mm
 - Magnetic field: $(5.5T \rightarrow 0T) + 0.5T$
 - Capture & Pre-accelerating structure
 - Length:2 m
 - Aperture: 25 mm
 - Gradient: 22 MV/m
 - Chicane
 - Wasted electron separation
 - Focusing structure
 - Solenoid

Positron source

Modulator

Klystron 80MW

RF window

Energy doubler

Power divider

load

Accelerating structures

- Norm. RMS. Emittance
 - 2500 mm-mrad
- Energy: >200 MeV
- Positron yield
 - Ne+/Ne- > 0.55 @ [-8°, 12°, 235MeV, 265MeV]

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Outline

CEP

- Introduction
 - Main parameters
 - Linac layout
- Source design
 - Electron source
 - Positron source
- Linac design
 - Electron mode
 - Positron mode
- Summary

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

Linac design

Electron linac

- Focusing structure: *Triplet*
 - Same beam envelopes at X/Y planes
 - 1 triplet+4 Acc. Stru. →1 triplet+8 Acc. Stru.
- Operation mode :
 - High charge mode (positron production)
 - 4GeV & 10 nC
 - ESBS+FAS
 - Low charge mode (electron injection)
 - 10 GeV & 3 nC
 - ESBS+FAS+EBTL+TAS

Linac design Electron linac -> Positron production

Energy spread (%)

1.4

1.2

 10^{4}

10³

- High charge mode
 - 10 nC @ 4 GeV
 - Energy spread (rms): 0.5%

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

0

t (ps)

250

5

-X_{rms}

⊸X_{max},

-Y_{rms}

max

300

4.1

e x.rms

y,rms

Linac design Electron linac -> Electron injection

- High charge mode
 - 10 nC @ 4 GeV
 - Energy spread (rms): 0.5%
 - Emittance growth with errors
- Low charge mode
 - EBTL
 - Local achromatic
 - Matching
 - Collimator (momentum tail)

Linac design Electron linac -> Electron injection

- High charge mode
 - 10 nC @ 4 GeV
 - Energy spread (rms): 0.5%
 - Emittance growth with errors
- Low charge mode
 - 3 nC @ 10 GeV
 - Energy spread (rms): 0.15%
 - Emittance (rms): 5 nm

Linac design

Positron linac

Workshop on Circular Electron Positron Collider, 24–26 May 2018, Roma, Italy

Linac design

Positron linac

- Positron linac
 - 3 nC && 10 GeV
 - Energy spread (rms): 0.16%
 - Emittance with DR (rms): 40/24nm
 - Emittance without DR (rms): 120/120nm

Linac design Misalignment errors with correction

- Positron linac
 - One-to-one correction scheme
 - Errors: Gaussian distribution, 3σ truncated
- Beam orbit
 - RMS value< 0.3 mm
 - Rms value< 0.1 mm (high energy part)

Error description	Unit	Value
Translational error	mm	0.1
Rotation error	mrad	0.2
Magnetic element field error	%	0.1
BPM uncertainty	mm	0.1

Workshop on Circular Electron Positron Collider, 24–26 May 2018, Roma, Italy

Linac design

Field errors

- Simulation condition
 - 5000 seeds
 - Accelerating tubes
 - phase errors and amp errors
 - 4 in 1 KLY, 4 accelerating tubes in one group
 - 3σ--Gaussian

- Energy spread < 0.2%
- Energy jitter: 0.2%
 - Phase errors: 0.5 degree (rms)
 - Grad. errors: 0.5% (rms)

Workshop on Circular Electron Positron Collider, 24–26 May 2018, Roma, Italy

Linac design

Damping Ring

DR V1.0	Unit	Value
Energy	GeV	1.1
Circumference	М	58.5
Repetition frequency	Hz	100
Bending radius	Μ	3.62
Dipole strength B ₀	Т	1.01
U ₀	keV	35.8
Damping time x/y/z	ms	12/12/6
δ ₀	%	0.05
ε ₀	mm.mrad	287.4
Nature σ_z	mm	7 (23ps)
8 _{ini}	mm.mrad	2500
$\varepsilon_{\text{ext x/y}}$	mm.mrad	704/471
$\delta_{ini}/\delta_{ext}$	%	0.3/0.06
Energy acceptance by RF	%	1.0
f _{RF}	MHz	650
V _{RF}	MV	1.8

• CSR Instability

32

Workshop on Circular Electron Positron Collider, 24-26 May 2018, Roma, Italy

- The CEPC linac works with 100 Hz repetition, 10 GeV and one-bunch-perpulse, which can meet the requirements of Booster;
- The linac can provide positron beam and electron beam larger than 3nC bunch charge, which is larger than the requirements;
- One preliminary damping ring is proposed, the emittance with DR is smaller than the required value;
- By now seems it's no problem in linac design and further works are on the way.