

CEPC Workshop Higgs Hadronic Decay Branch Ratio Measurement in CEPC

Yu Bai (from Southeast University, Nanjing) On Behalf of CEPC Physics-Software Study Group May 25, 2018

Introduction

Current Result in H->bb

$H \to b \overline{b}$	Tevatron	ATLAS Run 1	CMS Run 1	ATLAS Run 2	CMS Run 2
VH	1.6 ± 0.7	$0.52 \pm 0.32 \pm 0.24$	1.0 ± 0.5	$1.20 \pm 0.24 \pm 0.28$	1.2 ± 0.4
VBF		-0.8 ± 2.3	$2.8\pm1.4\pm0.8$	-3.9 ± 2.8	-3.7 ± 2.7
ttH		$1.4\pm0.6\pm0.8$	0.7 ± 1.9	$2.1\pm0.5\pm0.9$	$1.19\pm0.5\pm0.7$
Inclusive	_	_	_	_	2.3 ± 1.7
PDG Comb.	1.6 ± 0.7	0.6 ± 0.4	1.1 ± 0.5	1.2 ± 0.3	1.2 ± 0.4

An improvement of more than 1 order of magnitude in precision at CEPC

Higgs hadronic decay: Benchmark channel to understand the performance in tracking, vertex finding, jet clustering and flavor tagging

Review of the Analysis

- 2016-2017: H->bb/cc/gg Analysis in qqH/vvH/eeH/μμH
 - Demonstrate the capability of flavor tagging and jet clustering in achieving the precision
 - Flavor tagging are implemented with template fit method
 - Will be included in white paper/CDR
- From summer in 2017, IIH channel redone with new method:
 - 2-D template fit replaced by a 3-D fit
 - Systematic uncertainty considered
 - Summarize in note, paper draft reviewed
- Latest update:
 - Redo analysis with 3T samples
 - New techniques to improve the performance of analysis

Event Selection in IIH/vvH/qqH

Signal:	Backgrounds:	Preselection:	Flavor Tagging	
ZH->II+ii	ZZ semi-leptonic(<i>µµ</i> jj) Single Z-leptonic(eejj)	Lepton Pair Invariant mass Lepton Recoil mass Jets Invariant mass Higgs Polar angle	•	
$ZH \rightarrow vv + jj$	ZZ semi-leptonic (one Z invisible decay) Single Z semi-leptonic WW/SW semi-leptonic	Missing Energy,p⊤ Jets invariant/recoil mass Jet Multiplicity(yth-value) Angle between jets MVA applied	Template Fit	
ZH->multi-jets $\stackrel{e^-}{\underset{e^+}{\overset{Z^*}{\underset{Z^*}{\overset{H^-}{\underset{Q^*}{\underset{Q^*}{\overset{Q^*}{\underset{Q^*}{\underset{Q^*}{\overset{Q^*}{\underset{Q^*}{\underset{Q^*}{\overset{Q^*}{\underset{Q^*}{\qquad{Q^*}{\qquad{Q^*}{\qquad{Q^*}{\qquad{Q^*}{\qquad{Q^*}{Q^*}{\underset{Q^*}{\qquad{Q^*}{Q^*}{\qquad{Q^*}{Q^*}{\qquad{Q^*}{Q^*}{Q^*}{Q^*}{Q$	quark pair production ZZ/WW hadronic	Total Energy Jet Multiplicity Jet Paring(jet invariant mass and angular distribution) MVA applied		

Results of IIH/vvH/qqH

Performance of multi-variable based flavor tagging :

Results from full simulation study:

Template Fit:

Table 6. Expected relative precision on $\sigma(ZH) \times BR$ for the $H \to b\bar{b}$, $c\bar{c}$ and gg decays from a CEPC dataset of 5 ab⁻¹.

Z decay mode	$H \rightarrow b\bar{b}$	$H \rightarrow c \bar{c}$	$H \to gg$	Comments
$Z \rightarrow e^+ e^-$	1.3%	14.1%	7.9%	CEPC study
$Z ightarrow \mu^+ \mu^-$	1.0%	10.5%	5.4%	CEPC study
$Z \to q \bar{q}$	0.4%	8.1%	5.4%	CEPC study
$Z \rightarrow \nu \bar{\nu}$	0.4%	3.8%	1.6%	CEPC study
Combined	0.3%	3.2%	1.5%	

Results in preCDR:

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b \bar{b}$	0.28%	0.57%
$H \to c \bar{c}$	2.2%	2.3%
$H \to gg$	1.6%	1.7%

- Consistent with pre-CDR result
- Demonstrate the capability to achieve expected performance

IIH Analysis with 3D Fit

- Dominant background in IIH analysis estimated from 'data':
 - $\mu\mu$ H channel: ZZ*/Z γ *-> $\mu\mu$ qq
 - eeH channel: ee+qq
- Analysis independent of MC prediction of dominant backgrounds:
 - These backgrounds have different lepton pair recoil mass spectrum
 - Extract the backgrounds' yield by including recoil mass spectrum in the fit

3D Fit

- Recoil mass of signal: Crystal ball + double side exponential
- Recoil mass of dominant background: 1 order Chebychev polynomial
- Background and signal model describe the simulated data well

Statistic Uncertainties

- ToyMC generate data fluctuate according to statistic uncertainty
- Roughly get the same statistic uncertainty as before

Systematic Uncertainty

- Flavor tagging systematic uncertainty directly caused by the bias in templates
- Flavor tagging systematic uncertainty are estimated in the scenario calibration with $\mu\mu$ qq
- The precision of calibration are limited by μμqq statistic uncertainty and the knowledge of its flavor components
- Typical bias are considered in each template

in real data

Systematic uncertainty in IIH channel

	$\mu^{+}\mu^{-}H$ $e^{+}e^{-}$				e^+e^-H		
	1.11%	10.5%	5.44%	1.59%	14.4%	8.3%	
	$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$	$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$	
Fixed Background	-0.17%	+4.1%	7.6%	-0.17%	+4.1%	7.6%	
Fixed Background	+0.06%	-4.2%	1.070	+0.06%	-4.2%		
Event Selection	+0.68%	+0.43%	+0.71%	+0.68%	+0.43%	+0.71%	
Event Selection	-0.20%	-1.1%	-1.7%	-0.20%	-1.1%	-1.7%	
Flavor Tagging	0.67%	10.4%	1.1%	0.67%	10.4%	1.1%	
Non uniformity		0.016%			0.016%		
Combined	+0.96%	+11.2%	+7.7%	+0.96%	+11.2%	+7.7%	
Combined	-0.72%	-11.3%	-7.9%	-0.72%	-11.3%	-7.9%	

Output of flavor fraction linear to typical bias: linearity can be used to extract uncertainty Only a methodology study. Need to be fulfilled with calibration

eeH uncertainty extrapolate from mumuH

9

Analysis with 3T sample

- No obvious change in the fitted results
- The recoil mass spectrum change as expected: $0_{0}323/0.269 \approx 3.5/3.0$, mumu recoil mass get width

3T sample disagreement in soft region

	3T	3.5T	Eff Ratio
Filter	4.5	5%	
FSClasser		Unknown	
$\cos \theta_z$	68.0%	68.6%	0.99
$\cos heta_{\mu\mu}$	89.1%	89.1%	1.00
Μμμ	88.4%	89.7%	1.00
M_recoil	44.8%	45.3%	0.99
2J+Lep_Veto	97.1%	98.4%	0.99
JetnPFO	99.3%	97.4%	1.02
$\cos heta_{ m JJ}$	91.9%	92.4%	0.99
MJJ	94.5%	85.8%	1.10
y-value	93.2%	94.0%	0.99

- It seems the disagreement is from low energy neutral clusters
- Problems in survey, will be cleared soon

Technic development : Convolutional NN in Jets

We use CNN to separate H->qq and H-> ZZ*/WW*->qqqq

Summary

- Study of Higgs hadronic decay measurement in eeH/μμH/ννH/ qqH channel are done with full simulation sample, demonstrating the capability to achieve expected performance in CEPC
- eeH/μμH redone with less MC-dependent way, systematic uncertainties studied in terms of methodology
- Analysis with 3 Tesla magnetic has been studied. No significant change in final results but need to find out the reason of disagreement with previous sample
- New analysis technology are developed and it is helpful to the analysis in future.

Uncertainty of qqH/vvH/eeH/µµH

15

Combined Fit of qqH/vvH/eeH/

3D Fit Result-µµH

FCN=-233039 FROM HESSE STATUS=OK	131 CALLS 25 1s 684 TOTAL			
EDM=0.000150386	STRATEGY= 1 Higgs ERROR MATRIX ACCURAT	E code		
EXT PARAMETER	INTERNAL: -3, 2\$ INTERNAL			
NO. NAME VALUE ERRO	R STEP SIZE 3.25 1 VALUE			
1 C 1.56571e-02 7.6411	3e-03 1.04870e-03 -1.17248e+00			
2 a -1.02613e+00 2.9746	7e-02 7.60479e-05 -1.02794e-01			
3 a1 -3.35677e-01 2.4156	2e-02 1.44428e-03 -3.35677e-01			
4 mean 1.25238e+02 5.4975	6e-03 3.02347e-04 1.53414e-01			
5 n 9.28731e-01 2.6645	2e-02 9.30339e-05 2.89863e-01			
6 nHbb 1.11897e+04 1.3293	6e+02 1.52103e-04 2 1.19208e-01			
7 nHcc 4.94687e+02 5.5989	6e+01 3.04892e-04 -1.12265e+00			
8 nHgg 1.50519e+03 8.4682	4e+01 4.29695e-04 -4.09559e-01			
9 nbkg 1.55884e+02 2.8897	6e+01 1.26565e-03 -8.90024e-01			
10 nzzsl_mu_bb 1.55457e+03 8.945	63e+01 3.09297e-04 p-5.89637e-01			
11 nzzsl_mu_cc 1.56988e+03 6.194	08e+01 2.51995e-04 -5.84381e-01			
12 nzzsl_mu_uds 4.63830e+03 8.96	344e+01 6.29296e-04 -5.65984e-01			
13 sigma 2.69879e-01 5.4392	5e-03 1.51060e-04 -6.12975e-01			
ERR DEF=	0.5 CrossSection_250_C.so			
EXTERNAL ERROR MATRIX. NDIM= 25	NPAR= 13 (ERR: DEF=0.5)_250_C_ACLiC_o			
ELEMENTS ABOVE DIAGONAL ARE NOT PRINTE	D. DoMuMuH.C			
5.858e-05				
-2.806e-05 8.849e-04				
-9.440e-06 1.615e-04 5.835e-04	MagCompare			
7.919e-07 -8.649e-05 -9.962e-06 3.02	2e-05 Mrecoil.pdf			
1.813e-05 6.713e-04 2.332e-04 -5.64	4e-05 7.100e+04:oil_mumu.pdf			
4.0420-02 -4.4430-01 -5.5390-01 2.80	70-02 -9.0410-01 1.7670+04			
-6.7066-03 -5.6406-02 -6.7176-02 5.88	00-03 -1.2350-01 -1.4720+02 3.1360+03	7-17402		
-2.7600-03 -5.2410-02 -1.4210-01 6.38	5e-03 -2.942e-01 5.379e+02 -7.552e+02	9. 202- (01) - 9. 277- (02)		
	40-04 1.5/90-02 -9.45/0+01 -2.1460+01	-8.3020+01 8.3770+02 0		
-4.0520-02 4.5550-01 0.8/40-01 -2.91	1-02 9.3790-01 -0.0300+03 -2.4370+02	-9.480e+02 -9.091e+01 8.005e	+03	
8.0000-000 4.1490-02 8.0//0-02 -4.02	10-03 1.30/0-01 -2.2200+02 -1.42/0+03	-3.0050+01 -0.2460+01 1.2320	+02 5.8370+03	
3 1000-03 3 5070-02 1 2020 01 5 00	20-02 2.2230-01 5.00000+02 3.2750+02	-3.1070403 -3.0500402 7.5550	+02 -5.7000+02	
1 8180-05 -7 5460-05 -7 6060 06 1 69	20-05 -3 5000-05 1 6710 02 5 0000 02	1 6120-02 -2 8760 04 -4 8860	-02 -7 2400-02	
1 8180-05 -7 5460-05 -7 6060 06 1 68	20-05 -3 5000-05 4.0/10-02 5.9060-03	1 6120-02 -2 8760-04 -4 8860	-02 -7 2400-03 -1 2670 02	2 0500-05
1.0100-00 -7.0400-00 -7.0900-00 1.06	26-02 -2.2206-02 4.0/16-02 2.3066-02	1.0120-02 -2.0700-04 -4.0000	-02 -1.2496-03 -1.2076-02	2.3336-03

3D Fit Result-eeH

FCN=-	143088 F	ROM HESSE	STATUS=0K	10 11	15 CALLS	709 TOTAL					
		EDM=	0.000239403	STRATEGY=	1 EF	ROR MATRIX ACCURATE	E				
EXT	PARAMETE	R		INT	ERNAL	INTERNAL					
NO.	NAME	VALUE	ERRO	R STE	P SIZE	VALUE					
1	a	-2.7746	3e-01 2.9453	le-02 9.3	4960e-06	-2.77499e-02					
2	al con	-5.4396	6e-01 2.4996	3e-02 2.7	6246e-04	-5.75156e-01					
3	mean	1.2530	6e+02 ot 2.32734	4e-02 1.3	7162e-04	2.30756e-01					
4	n	1.3917	75e+00 8.8746	3e-02 3.0	1172e-04	6.36640e-01					
5	nHbb	6.8478	0e+03 1.1545	6e+02 9.9	1464e-05	-3.20758e-01					
6	nHcc	2.9131	9e+02 4.5516	0e+01 2.4	4970e-04	-1.22833e+00					
7	nHgg	8.3166	8e+02 7.9996	9e+01 3.6	1313e-04	-7.31102e-01					
8	nsig	7.1341	4e-01 1.1339	6e-02 7.1	1706e-04	-6.91426e-01					
9	nzzsl_mu	_bb 1.231	65e+03 8.785	86e+01 2.	41494e-04	-7.05396e-01					
10	nzzsl_mu	_cc 1.173	387e+03 5.3524	45e+01 1.	87426e-04	-7.27288e-01					
11	nzzsl_mu	_uds 4.04	222e+03 8.80	655e+01 9	.52480e-6	05 -6.38334e-01					
12	sigma	2.7001	l3e-01 1.8888	7e-02 2.5	7037e-04	-6.12564e-01					
			ERR DEF=	0.5							
EXTER	RNAL ERRO	R MATRIX.	NDIM= 25	NPAR= 12	ERR DEF	=0.5					
ELEM	INTS ABOV	E DIAGONAL	ARE NOT PRINTER	D.							
8.67	′5e-04										
9.08	34e-05 6	.250e-04									
-5.09	93e-04 -2	.606e-05 S	5.418e-04								
1.93	38e-03 6	.561e-04 -6	5.578e-04 7.89	0e-03							
-1.19	92e-01 -3	.896e-01 -2	2.148e-02 -2.25	2e+00 1.33	3e+04						
-1.26	52e-02 -6	.956e-02 -3	3.097e-03 -2.53	4e-01 -4.32	5e+00 2.	.072e+03					
-3.58	36e-02 -3	.652e-01 1	.300e-02 -9.34	5e-01 6.23	8e+02 -5.	922e+02 6.403e+03					
-1.24	5e-05 -2	.664e-05 2	2.097e-05 1.79	1e-04 -4.52	0e-01 -3.	895e-02 -1.017e-01	1.289e-04				
1.20	07e-01 4	.173e-01 2	2.215e-02 2.32	5e+00 -6.24	5e+03 -2.	251e+02 -9.681e+02	4.630e-01	7.722e+03			
1.23	34e-02 9	.547e-02 1	1.955e-03 3.07	9e-01 -2.26	2e+02 -1.	098e+03 -5.345e+01	4.636e-02	1.487e+02	2.865e+03		
2.44	5e-02 3	.172e-01 -7	7.329e-03 7.814	4e-01 -6.11	2e+02 2.	899e+02 -3.796e+03	8.485e-02	8.132e+02	-4.116e+02	7.756e+03	
-3.76)5e-04 -1	.474e-05	3.619e-04 -2.22	0e-04 -1.45	6e-01 -9.	821e-03 -1.095e-02	5.349e-05	1.487e-01	9.952e-03	1.010e-02	
-3.76)5e-04 -1	.474e-05	3.619e-04 -2.22	0e-04 -1.45	6e-01 -9.	821e-03 -1.095e-02	5.349e-05	1.487e-01	9.952e-03	1.010e-02	3.572e-04

Results with exponential background shape in eeH channel

 much smaller deviation in H->cc/gg channel, but much larger deviation in H->bb channel

Event Selection of nnh

Event Pre-selection:

- Number of particles(PFO) >=20
- Visible Energy between 110 and 150 Ge
- Isolated electron and isolated muon veto
- y₁₂ between 0.15 and 1.0, y₂₃<0.06, y₃₄<0.008
- $\cos \theta$ between -0.98 and -0.4,
- BDT Cut(redone at 0.07)

140

160 jet pair invariant mass [GeV]

80

20

Event Selection of qqh

Basic Selection

Jet Paring