Germanium-detector based study of the 2H(p,γ)3He cross section at LUNA

Klaus Stöckel1,2 for the LUNA collaboration

1Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
2Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany

Recent, precise measurements of the primordial 2H abundance [1] have opened the possibility to precisely determine of the primordial baryon-to-photon ratio, independent from the cosmic microwave background. For their interpretation, the 2H abundance data require equally precise nuclear data, in particular on the 2H(p,γ)3He reaction.

Deep underground in the Gran Sasso laboratory, Italy, the LUNA collaboration is undertaking a dedicated effort to measure the 2H(p,γ)3He cross section directly in the Big Bang energy window of interest. The campaign is divided in two phases based on a BGO and a high-purity germanium (HPGe) detector, respectively.

The present poster will report on the second, HPGe-based phase of the experiment. Due to the Doppler shift of the emitted γ-rays, in addition to the absolute yield also information on the γ-ray angular distribution, thus reducing the systematic uncertainty. The characterization and calibration of the setup and detectors, background conditions, and potential sources of uncertainty will be discussed.

References