Isomeric RIB Production of Aluminum-26

H.Shimizua,c, D. Kahlb, H. Yamaguchia, K. Abea, O. Beliuskinae, S.M. Chac, K.Y. Chaec, A.A. Chenc, Z. Gee, S. Hayakawaa, N. Imaia, N. Iwasac, A. Kimc, D.H. Kimc, M.J. Kimc, S. Kubonoa, M.S. Kawagc, J. Liangd, J.Y. Moonh, S. Nishimurac, S. Okaa, S.Y. Parka, A. Psaltisa, T. Teranishia, Y. Uenoc and L. Yanga

aCenter for Nuclear Study, the University of Tokyo, bthe University of Edinburgh, cSungkyunkwan University, dMcMaster University, eRIKEN Nishina Center, fTohoku University, gEwha Womans University, hInstitute for Basic Science, iKyushu University

^{26}Al is known as the first specific radioactivity detected via characteristic β-delayed γ-ray by astronomical telescopes [1]. Despite a lot of effort over the past three decades, the particular production sites of galactic ^{26}Al are not well understood and there is a discrepancy between observations and theories on estimated abundance of ^{26}Al in the interstellar medium [2]. Its isomer, ^{26m}Al, which is $J^\pi = 0^+$ and has a short lifetime of 6.35 s compared with the ground state, ^{26g}Al, which is $J^\pi = 3^+$ and $T_{1/2} = 0.72$ Myr, may play an important role to the problem because it falls to ^{26}Mg as super allowed Fermi transition and does not emit any γ-rays. The two states, $^{26g,m}\text{Al}$, are suggested to be in transition and in thermal equilibrium by thermal photons via low-lying 1^+ state, at least in extremely high temperature environments, such as a supernova [3]. However the experimental information on the isomer is poorly examined and thus was requested for further experimental study by stellar modelers. The RI beam production of ^{26m}Al is a step to approach the puzzles of the abundance under the equilibrium. We will present an overview of the experiment to produce the isomeric RI beam of ^{26}Al and measure proton elastic resonant scattering with a thick target in inverse kinematics by using the Center for Nuclear Study low-energy radioactive ion beam separator (CRIB [4]), located at RIKEN Nishina Center.

References

