Isomeric RIB Production of Aluminum-26

H.Shimizu^{*a,e*}, D. Kahl^{*b*}, H. Yamaguchi^{*a*}, K. Abe^{*a*}, O. Beliuskina^{*a*}, S.M. Cha^{*c*}, K.Y. Chae^{*c*}, A.A. Chen^{*c*}, Z. Ge^{*e*}, S. Hayakawa^{*a*}, N. Imai^{*a*}, N. Iwasa⁶, A. Kim^{*c*}, D.H. Kim^{*c*}, M.J. Kim^{*c*}, S. Kubono^{*e*}, M.S. Kawag^{*c*}, J. Liang^{*d*}, J.Y. Moon^{*h*}, S. Nishimura^{*e*}, S. Oka^{*a*}, S.Y. Park^{*a*}, A. Psaltis^{*a*}, T. Teranishi^{*a*}, Y. Ueno^{*a*} and L. Yang^{*a*}

^aCenter for Nuclear Study, the University of Tokyo, ^bthe University of Edinburgh, ^cSungkyunkwan University, ^dMcMaster University, ^eRIKEN Nishina Center, ^fTohoku University, ^gEwha Womans University, ^hInstitute for Basic Science, ⁱKyushu University

 26 Al is known as the first specific radioactivity detected via characteristic β -delayed γ ray by astronomical telescopes [1]. Despite a lot of effort over the past three decades, the particular production sites of galactic ²⁶Al are not well understood and there is a discrepancy between observations and theories on estimated abundance of ²⁶Al in the interstellar medium [2]. Its isomer, 26m Al, which is $J^{\pi} = 0^+$ and has a short lifetime of 6.35 s compared with the ground state, ^{26g}Al, which is $J^{\pi} = 5^+$ and $T_{1/2} = 0.72$ Myr, may play an important role to the problem because it falls to ${}^{26}Mg$ as super allowed Fermi transition and does not emit any γ -rays. The two states, $^{26g,m}Al$, are suggested to be in transition and in thermal equilibrium by thermal photons via low-lying 1^+ state, at least in extremely high temperature environments, such as a supernova [3]. However the experimental information on the isomer is poorly examined and thus was requested for further experimental study by stellar modelers. The RI beam production of ^{26m}Al is a step to approach the puzzles of the abundance under the equilibrium. We will present an overview of the experiment to produce the isomeric RI beam of ²⁶Al and measure proton elastic resonant scattering with a thick target in inverse kinematics by using the Center for Nuclear Study low-energy radioactive ion beam separator (CRIB [4]), located at RIKEN Nishina Center.

References

- [1] S. Plüschke *et al. The COMPTEL 1.809 MeV Survey*, arXiv preprint astro-ph **0104047** (2001)
- [2] R.H Diehl *et al. Radioactive* ²⁶Al *and Massive Stars in the Galaxy*, arXiv preprint astroph **0601015** (2006)
- [3] R.C.Runkle, A.E.Champagne and J.Engel, *Thermal Equilibration of* ²⁶Al, The Astrophysical Journal **446**:970–978 (2001)
- [4] Y. Yanagisawa et al. Low-energy radioisotope beam separator CRIB, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 539(1):74–83 (2005)