Nucleosynthesis of 60Fe and constraints on the nuclear level density and γ-ray strength function

D. Richmana, A. Spyroub and A. Couturec

aMichigan State University, NSCL, bNSCL, MSU, cLos Alamos National Laboratory

60Fe is created by neutron capture in massive stars prior to core collapse supernova. This isotope is one of only a handful whose gamma-rays from β-decay indicate ongoing nucleosynthesis in the Galaxy. For this reason the reactions involved for the creation and destruction of 60Fe in this environment must be well understood. Due to the short half-life of 59Fe it is challenging to perform a direct capture reaction experiment to determine the cross section of $^{59}(n,\gamma)^{60}$Fe. Instead we used the β-decay of 60Mn to populate states at all energies in the 60Fe nucleus. The resulting γ-rays were collected using a 4π total-absorption spectrometer, SuN (Summing NaI(Tl) detector), at the NSCL. With this data the β-Oslo method can be applied to extract the nuclear level density and gamma-strength function needed for statistical models to calculate the reaction rate using experimentally constrained nuclear structure parameters. Preliminary results from the ongoing analysis will be presented.