

Study on explosive nuclear synthesis with low-energy RI beams at CRIB

Hidetoshi Yamaguchi, Seiya Hayakawa, Lei Yang, Hideki Shimizu

Nuclear Astrophysics Group, Center for Nuclear Study, Univ. of Tokyo

in Collaboration with:

RIKEN, KEK, Kyushu, Tsukuba, Tohoku, Osaka (Japan), McMaster (Canada), CIAE, IMP, Beihang (China), Chung-Ang, IBS, Ehwa, SKKU (Korea), INFN Padova/Catania (Italy), IOP(Vietnam) and others.

Tanto piacere!

- Brief introduction of our RI beam separator CRIB (CNS, U-Tokyo)
- Nuclear astrophysics projects at CRIB:
 - 1. Alpha resonant scattering with thick-target method in inverse kinematics (TTIK)

$$^{7}\text{Li}/^{7}\text{Be}+\alpha$$
, $^{30}\text{S}+\alpha$, $^{10}\text{Be}+\alpha$, $^{15}\text{O}+\alpha$, etc.

2. Trojan Horse experiments with RI beam [skipped]

¹⁸F(p,a) in Novae: Silvio Cherubini (INFN-LNS)

⁷Be(n,p)/(n,α) in BBN: Seiya Hayakawa (CNS, U-Tokyo)

Daid Kahl (CNS → Edinburgh)

4. Reaction study with RI-implanted target

⁷Be(d,p) with A. Tamii, A. Inoue (RCNP, Osaka)

CRIB

- CNS Radio-Isotope Beam separator, constructed and operated by CNS, Univ. of Tokyo, located at RIBF (RIKEN Nishina Center).
 - ◆ Low-energy(<10MeV/u) RI beams by in-flight method.
 - ◆ Primary beam from K=70 AVF cyclotron.
 - ◆ Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.
 - ◆ Orbit radius: 90 cm, solid angle: 5.6 msr, momentum resolution: 1/850.

CRIB/OEDO in RIBF

Facilities operated by CNS, the University of Tokyo in RIBF (RIKEN Nishina center)

- CRIB: RI beam separator for low-mass, low-energy (<10 MeV/u)
 RI beams
- SHARAQ: high resolution spectrometer

OEDO: new low-energy (10-50 MeV/u) beamline for exotic beams

CRIB

OEDO: new low-energy (10-50 MeV/u) beamline for exotic beams

SHARAQ

+OEDO (2017-)

Low-Energy RI beam Productions at CRIB

2-body reactions such as (p,n), (d,p) and (³He,n) in inverse kinematics are mainly used for the production....large cross section

Many RI beams have been produced at CRIB: typically 10⁴-10⁶ pps

Higher intensity for ⁷Be beam with cryogenic H₂ target: 3 x 10⁸ pps.

H.Yamaguchi@NIC XV

α-resonant scattering ... a striking method to study resonant reactions and nuclear clusters

- 1. ⁷Li+α (¹¹B), 3-body cluster, neutrino process (H. Yamaguchi et al., Phys. Rev. C (2011).
- 2. ⁷Be+α (¹¹C), mirror symmetry between ¹¹B and ¹¹C, supernovae nucleosynthesis H. Yamaguchi et al., Phys. Rev. C (2013).
- 3. ¹⁰Be+α (¹⁴C), Linear-chain levels H. Yamaguchi et al., Phys. Lett. B (2017).
- 4. ³⁰S+α (³⁴Ar), astrophysical ³⁰S(α, p) reaction D. Kahl et al., Phys. Rev. C (2018).
- 5. $^{15}\text{O}+\alpha$ (^{19}Ne), Comparison with ^{20}Ne cluster, astrophysical $^{18}\text{F}(p, \alpha)$ reaction Exp. done in 2015, Dahee Kim Ph.D (2018).
- 6. ¹⁸Ne+α (²²Mg), Mirror symmetry breaking? (⇔²²Ne) Exp. Done in 2016.

 H. Yamaguchi@NIC XV

10 Be+ α

- Linear-chain cluster levels in ¹⁴C were predicted in Suhara & En'yo calculation.
- Asymmetric, ¹⁰Be+α configuration
 …likely to be observed with
 ¹⁰Be+α alpha-resonant scattering.
- May form a band with $J^{\pi}=0^+,2^+,4^+$ a few MeV above α -threshold.
- Scattering of two 0⁺
 particles...only *l*-dependent
 resonant profile.

Suhara & En'yo, PRC 2010 and 2011:

Experimental setup

Thick target method in inverse kinematics, similar to the previous ${}^{7}\text{Be}+\alpha$.

- •Two PPACs for the beam PI, trajectory, number of particles.
- •Two silicon detector telescopes for recoiling α partciles.
- • E_{cm} and θ obtained by event-by-event kinematic reconstruction.

Rotational Band identified

The set of resonances we observed $(0^+, 2^+, 4^+)$ is proportional to J(J+1) ... consistent with a view of rotational band.

In a good agreement with the theoretical prediction; Suhara-En'yo (2010)/ Baba-Kimura (2016).

H.Yamaguchi@NIC XV

30 S(α ,p)

- $^{30}S(\alpha,p)$... one of the key reactions in X-ray bursts.
- Scarce ³⁴Ar resonance information, reaction rate evaluation had been only by statistical model.
- ³⁰S+α resonant scattering with active target... D. Kahl et al., Phys. Rev. C (2018).
- 3 higher-lying resonances were observed:

Astrophysical implications

Reaction rate (upper limit) evaluation with RCNP(Osaka) ³⁶Ar(p,t)³⁴Ar transfer reaction data + CRIB(Tokyo) resonant scattering data

⇒Higher than the stat. model rate calculation

←X-ray burst energy generation: higher than the statistical model

250/ or become at [acceptance].

25% enhancement [even with this single reaction].

-Max. 30% of abundance change for A=20-80 nuclei.

•See also: Long et al., PRC 97, 054613 (2018).

$^{15}\text{O}+\alpha$: in collaboration with Ewha Womans Univ. (Dahee Kim, Aram Kim, K.I. Hahn et al.)

¹⁸F nucleosynthesis in the classical nova

Destructive reactions of ¹⁸F (important for the 511-keV from novae):

$$^{18}{
m F}(p, \alpha)^{15}{
m O}$$
 $^{18}{
m F}(p, \gamma)^{19}{
m Ne}$

$$^{18}\mathrm{F}(p,\gamma)^{19}\mathrm{Ne}$$

Resonance study

K. Y. Chae et al. Astrophysical S- factor of the ¹⁸F(p,a)¹⁵O reaction

- Resonances near the proton threshold ($E_x = 6.411 \text{ MeV}$) are the key for the $^{18}F(p,\alpha)^{15}O$ reaction rate for $T_9 = 0.04 0.4$.
- Many studies, but still uncertain spin-parities and unresolved resonances
- Interference effect

E_r (keV)	J^{π}	Γ_p (keV)	Γ_{α} (keV)	Ref.
8	3/2+	2.2×10^{-37}	0.5	[10]
26	1/2-	1.1×10^{-20}	220.0	[10]
38	$3/2^{+}$	4.0×10^{-15}	4.0	[10]
287	5/2+	1.2×10^{-5}	1.2	[10]
330	3/2-	2.22×10^{-3}	2.7	[11]
450	7/2-	1.6×10^{-5}	3.1	[12]
664.7	$3/2^{+}$	15.2	24.0	[8]
827	$3/2^{+}$	0.35	6.0	[12]
842	1/2+	0.2	23.0	[12]
1009	7/2+	27.0	71.0	[12]
1089	5/2+	1.25	0.24	[12]
1122	5/2-	10.0	21.0	[12]

Present work vs Italian group vs Theory

D. Torresi et al., Phys. Rev. C 96, 044317(2017)

R. Otani et al., Phys. Rev. C 90, 034316(2014)

H.Yamaguchi@NIC XV

The origin of galactic ²⁶Al gamma rays

 26 Al γ -ray : The first observed cosmic γ -ray from specific nuclide (1.809 MeV)

An evidence of the on-going nucleosynthesis.

A key for understanding the evolution of the galaxy (26 Algs, $t_{1/2} = 0.7$ million years)

Production source: still uncertain. Massive stars? Supernovae? Novae?

Flow around ²⁶Al

High-T (>> 0.4GK)

Isomeric ²⁶Al does not produce γ -rays, however,

- ^{26m}Al production by
 ²⁵Mg(p,γ) and also
 from ²⁵Al⇒²⁶Si decay.
- Thermal equilibrium between ^{26g}Al and ^{26m}Al.
- ²⁶Al(p,γ)²⁷Si reaction destroys ²⁶Al.

²⁶Al isomer beam

- ²⁶Mg(p,n)²⁶Al reaction: At the energy of CRIB, the maximum angular momentum brought by the beam is limited, and the production of ²⁶Al ground state(5+) is highly suppressed. ⇒ High purity ²⁶Al isomer beam production is possible.
- This seemed to be a unique idea in 2014, but...

²⁶Al^m beam @Argonne:

S. Almaraz-Calderon et al., Phys. Rev. Lett 119, 072701 (2017), B.W. Asher et al., NIM A (2018).

At CRIB:

2016 First ^{26m}Al beam production 2017 ^{26m}Al+p resonant scattering measured

FIG. 4. Excitation functions for (a) $^{26}Mg(p,n_0)^{26}Al$, (b) $^{26}Mg(p,n_1)^{26}Al$, (c) $^{26}Mg(p,n_2)^{26}Al$, and (d) the total neutron yield.

Proof we made ^{26m}Al

- Pulsed the beam in regular tests, 12 s on 12 s off
 - Measured the β^+ 's with the Si telescope
 - Also measured 511-keV //s with Nal

 β^+ decay measurements: (a) Energy spectrum and (b) Decay timing. Both are consistent with ^{26m}AI .

H. Yamaguchi@NIC XV

²⁶Al proton spectra — the method worked!

Rough normalization (factor 2 error). Clear evidence of structure arising from ^{26m}Al and not ^{26g}Al.

H.Yamaguchi@NIC XV

New project:

Reaction measurement with implanted RI target in collaboration with RCNP (A. Tamii, A. Inoue et al.) and JAEA.

-in-flight RI beams: large emittance and low intensity. The RI that did not make a reaction is "disposed" immediately. Can we implant the RI into a small space and reuse them? We can choose an ideal host material for the implantation (Au).

-⁷Be(d,p) is the first (test)case for us, related to the ⁷Li abundance problem [*Remember: Talk by I. Wiedenhöver on Monday*]

Stronger motivation is on the technical aspect.

H. Yamaguchi@NIC XV

⁷Be(*d*, *p*) for the ⁷Be destruction

Cross section needs to be increased by a factor of 100 – 1000 to solve the 7Li abundance problem.

⁷Be(*d*,*p*) measurement with an implanted ⁷Be target

Summary

- CRIB is a low-energy RI beam facility in RIBF operated by CNS, University of Tokyo, providing low-energy (<10MeV/u) RI beams of good intensity and purity.
- Many interests: Cluster structure/alpha-induced astrophysical reactions with alpha resonant scattering, indirect measurements (THM and ANC), Al-26 isomeric beam for the cosmic gamma-rays, implanted RI target.
- We welcome new collaborators and new ideas. Please contact with me if you have any idea.
- The proposals are judged at the NP-PAC meeting (now once in a year in December), same as other RIBF facilities.
- Visit CRIB webpage for more information. http://www.cns.s.utokyo.ac.jp/crib/crib-new/