$^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ measurement for ^{19}F production in AGB stars

aUniversity of York, UK, bTRIUMF, BC, CA cUniversity of Notre Dame, IN, USA dColorado School of Mines, CO, USA, eMcMaster University, ON, CA.

$^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ is known to be one of the key formation mechanisms of ^{19}F in AGB stars [1]. ^{19}F may also be produced through this reaction in other stars such as Wolf-Rayet stars [2]. The ^{19}F abundance observed in the stellar spectra strongly depends on the conditions in the astrophysical site. Its nucleosynthetic origin has been debated for several decades, however the understanding of the $^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ reaction rate within the Gamow window at 200 MK for AGB stars is incomplete. Discrepancies in strength and energy exist between previous measurements in one of the key resonances, at $E_{\text{c.m.}}=1.323$ MeV. Furthermore, the direct-capture, non-resonant cross-section has never been directly measured.

The DRAGON recoil separator at TRIUMF was utilised to perform an inverse kinematics measurement of the $^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ reaction. Recolling ^{19}F nuclei leaving the windowless helium gas target were separated using DRAGON’s electromagnetic mass separator and detected in a DSSSD. Emitted gamma-rays from the de-excitation of the compound nucleus were detected in a BGO array surrounding the target and used for a coincidence analysis. We have measured the strength and energy of the $E_{\text{c.m.}}=1.323$ MeV resonance in the $^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ reaction as well as the direct-capture cross section down to an energy of $E_{\text{c.m.}}=0.96$ MeV. The 2017 ERMA measurement by Di Leva et al. [2] was the first time $^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ was measured in inverse kinematics; two strong reference resonances were measured. This measurement at DRAGON is the second inverse kinematics measurement. Our new measurement of the $E_{\text{c.m.}}=1.323$ MeV resonance will help in solving the existing discrepancies regarding its strength, and provides an independent measurement of its energy, as well as the first measurement of the direct-capture contribution in the low-energy regime. This measurement will reduce uncertainties in $^{15}\text{N}(\alpha, \gamma)^{19}\text{F}$ reaction rate, especially in the direct-capture component where no previous measurements exist, thus helping to refine our understanding of AGB models and ^{19}F production.

References

