

$\beta\text{-Delayed Charged Particle Detector for Studies of Novae and X-ray Bursts}$

M. Friedman^a, T. Budner^{a,b}, M. Cortesi^a, M. Harris^{a,b}, M. Janasik^{a,b}, D. Pérez-Loureiro^a, E. Pollacco^c, M. Roosa^{a,b}, A. Saastamoinen^d, J. Stomps^{a,b}, P. Tiwari^{a,b}, C. Wrede^{a,b} and J. Yurkon^a

^aNational Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA ^bDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ^cIRFU, CEA Saclay, Gif-sur-Yvette, France ^dCyclotron Institute, Texas A&M University, College Station, TX 77843, USA

Classical novae and type I X-ray bursts are energetic and common thermonuclear astrophysical explosions. However, our ability to understand these events is limited by the lack of comprehensive nuclear data on proton-rich nuclei. Specifically, constraining the $^{30}P(p,\gamma)^{31}S$ and $^{15}O(\alpha,\gamma)^{19}Ne$ reaction rates has been found to be crucial to the understanding of nucleosynthesis and energy generation in these events [1, 2]. As direct measurements of these reactions are not technically feasible at the present time, indirect measurements of dominant resonance strengths by β -delayed protons and alpha particles are proposed. A previous measurement at NSCL identified a new ³¹S state at $E_x = 6390$ keV to be a key resonance for 30 P proton capture at peak nova temperatures [3]. A significant branching ratio of 3.38% from 31 Cl β decay was observed, which enables the determination of the resonance strength by measuring the corresponding 259 keV β -delayed protons. Similarly, a previous measurement at NSCL observed a 0.0156% feeding of the ¹⁹Ne state at 4034 keV, a key resonance for the ¹⁵O(α , γ)¹⁹Ne reaction, by the $^{20}Mg(\beta p)$ sequence [4]. This branching ratio is sufficient to determine the resonance strength by measurement of the proton- α pairs. A gas-filled detector of β -delayed charged particles has been designed and built to measure the aforementioned decays at NSCL. The detector is coupled with the Segmented Germanium Array (SeGA) to enable coincidence γ detection as an additional probe of the decay scheme and for normalization purposes. The first phase of the detector functions as a proton calorimeter, and it is scheduled to be commissioned with 25 Si $(\beta p)^{24}$ Mg and 23 Al $(\beta p)^{22}$ Na during the first week of May 2018. We will report on the performance of the detector and present preliminary β -delayed proton spectra.

References

- [1] L. N. Downen et al., Astrophys. J. **762**, 105 (2013).
- [2] R. H. Cyburt et al., Astrophys. J. **830**, 55 (2016).
- [3] M. B. Bennett and C. Wrede et al., Phys. Rev. Lett. **116**, 102502 (2016).
- [4] C. Wrede et al., Phys. Rev. C. 96, 032801 (R) (2017).