

Estimating the Neutrino Flux from X-ray Bursts

A. J. Goodwin^a, D. K. Galloway^a and A. Heger^a

^aSchool of Physics and Astronomy, Monash University, Australia

Type I X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low-mass X-ray binaries. They are highly energetic ($\sim 10^{38}$ erg) events and so can release energy in the form of neutrinos. The neutrino flux released during an X-ray burst comes primarily from β -decays [3, 4]. Using KEPLER [5], a 1D implicit hydrodynamics code that calculates the full nuclear reaction network, we have measured the neutrino fluxes of type I bursts for a range of initial conditions. We find that neutrino losses are between 6×10^{-5} (low hydrogen fraction) and 0.185 (high hydrogen fraction), of the total energy per nucleon, $Q_{\rm nuc}$. We also find a dependence on the neutrino flux with metallicity of the accreted fuel. Recent literature often uses the approximation formula $Q_{\rm nuc} = 1.6 + 4 \ \bar{X} \, {\rm MeV/nucleon}$ where \bar{X} is the average hydrogen mass fraction of the ignition column to estimate $Q_{
m nuc}$ and hence fuel composition. We find this expression is a very poor fit (rms = 0.4..) to the KEPLER predictions. We attribute the discrepancy to the assumption of 35% energy loss due to neutrinos during the rp and αp processes [1] in this expression, however, it is only at β -decays that $\sim 35 \%$ of energy is lost due to neutrino emission [3, 4], and β -decays do not contribute much to the total energy. Using total measured burst energies from KEPLER for a range of initial conditions, we have determined a new approximation formula, $Q_{\text{nuc}} = 0.93 + 7.41 \overline{X} - 1.88 \overline{X}^2$ MeV/nucleon, with a root mean square error (RMS) value of 0.07 MeV/nucleon, compared to the old relation that has an RMS value of 0.47 MeV/nucleon.

References

- [1] A. Cumming, ApJ 595(2003)1077-1085
- [2] A. Cumming and L. Bildsten, ApJ 544(2000)453
- [3] R. Wallace and S Woosley, ApJ Supplement Series 45(1981)389-420
- [4] M. Fujimoto et al., ApJ **319**(1987)902-915
- [5] S. Woosley et al., ApJ 151(2004)75