First radiative proton capture cross-section measurements on 107,109Ag and 112Cd relevant to the p-process

A. Psaltis*, A. Khaliel, E.-M. Assimakopoulou†, A. Babounis†, A. Kanellakopoulos‡, V. Lagaki**, E.-M. Lykiardopoulou††, E. Malami‡‡, I. Psarra and T.J. Mertzimekis

* Department of Physics, University of Athens, Zografou Campus, GR-15784, Greece
† Present address: Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada.
‡ Present address: Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden.
‡‡ Present address: Institute für Kernphysik, Universität zu Köln, Zulpicher Str 77, D 5093-7 Köln, Germany.
** Present address: Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium.
†† Present address: University of Greifswald, Domstrae 11, 17489 Greifswald, Germany & CERN, Route de Meyrin, 1211 Genève, Switzerland.

One of the important, but still unsettled topics in Nuclear Astrophysics is the production of the p-nuclei [1, 2]. The p-process relies on an extended reaction network, which can be described theoretically by the Hauser–Feshbach statistical model, which in turn relies strongly on experimental data. To provide reliable data for p-nuclei, an experimental campaign at the Tandem Accelerator Laboratory of NCSR “Demokritos”, focusing on measurements of cross-sections in the 107,109Ag$(p, \gamma)^{108,110}$Cd [3] and 112Cd $(p, \gamma)^{113}$In [4] reactions was carried out. Both reactions were studied using a set of four HPGe detectors via the in-beam γ-ray spectroscopy, while for the latter the activation method was additionally employed to account for the population of a low-lying isomeric state. Total cross sections for proton beam energies lying inside the Gamow window for energies relevant to p-process nucleosynthesis were obtained for the first time. Experimental results are compared to Hauser–Feshbach calculations performed with the latest version of the TALYS code (v1.9) [5]. An overall good agreement has been achieved. These results provide important new input for the theoretical description of the p-process, but additionally for the origin of the cross-point p-nucleus 113In.

References