

A new experimental technique for measuring (p,n) reactions relevant to the neutrino-p process in the ReA3 facility

P. Gastis^{*a*,*f*}, G. Perdikakis^{*a*,*f*}, A.C. Dombos^{*b*,*f*}, A. Estrade^{*a*,*f*}, A. Falduto^{*a*,*f*}, C. Fröhlich^{*c*,*f*}, M. Horoi^{*a*}, S. Liddick^{*b*}, S. Lyons^{*d*,*f*}, F. Montes^{*d*,*f*}, A. Palmisano^{*b*,*f*}, J. Pereira^{*d*,*f*}, J.S. Randhawa^{*d*}, T. Redpath^{*b*}, M. Redshaw^{*a*}, J. Schmitt^{*b*,*f*}, J.R. Sheehan^{*b*}, M.K. Smith^{*d*,*f*}, A. Spyrou^{*b*,*f*}, P. Tsintari^{*a*}, A.C.C. Villari^{*e*}, K. Wang^{*a*}, R. Zegers^{*b*,*f*}

^aCentral Michigan University, ^bMichigan State University, ^cNorth Carolina State University, ^dNational Superconducting Cyclotron Laboratory, ^eFacility for Rare Isotope Beams, ^fJoint Institute for Nuclear Astrophysics: CEE

Neutrino driven winds in core-collapse supernovae constitute an important astrophysical environment for nucleosynthesis, especially for the formation of elements beyond iron. If the right proton-rich conditions are found in the wind, nuclei with atomic numbers up to Z \simeq 50 can be produced via the so called neutrino-p (ν p-) process. The strength of ν p-process depends on a few key (n,p) reactions like the ⁵⁶Ni(n,p)⁵⁶Co and ⁶⁴Ge(n,p)⁶⁴Ga for which currently no experimental data exist. With the current stateof-the-art, any direct measurement of (n,p) reactions on neutron-deficient nuclei is extremely challenging. For this purpose, a new experimental technique is under development at the ReA3 facility of the National Superconducting Cyclotron Laboratory for the study of astrophysically important (n,p) reactions via measuring their time-reverse (p,n) reactions in inverse kinematics. The main point of this technique is the separation of the heavy reaction products from the unreacted beam. This is properly achieved by operating a section of the ReA3 beam line as a recoil separator while using the LENDA neutron detector to tag the neutrons from the (p,n) reaction. At this stage, a proof-ofprinciple experiment has been performed using a stable ⁴⁰Ar beam at 3.52 MeV/u in order to measure the ⁴⁰Ar(p,n)⁴⁰K reaction. In this presentation, a detailed description of the experimental method and results from the first proof-of-principle run will be shown.

* This research project is funded by the U.S. Department of Energy, Office of Science