Predicting Neutron Capture Cross Sections from Nuclear Masses

A. Couture (LANL), R. F. Casten (Yale), R. B. Cakirli (Univ. Istanbul), M. Mumpower (LANL)

Nuclei in the Cosmos XV
Gran Sasso, Italy
25-29 June 2018
Neutron capture is a key piece to understanding r-process abundances

- Color intensity indicates sensitivity
- Different scenarios highlight different isotopes
- All tested scenarios require \((n,\gamma)\) far from stability
- NS-merger r-process scenarios are at least as sensitive to \((n,\gamma)\) as any sort of hot freeze-out

Unfortunately, neutron capture is challenging to predict accurately, even in “well-behaved” nuclei.

While agreement is reasonable where data exists, the models quickly diverge without data.
Can nuclear structure help?

- Recent work has shown improvement in statistical model predictions from improved understanding of M1 strength
- There are known connections between nuclear deformation and the M1 scissors mode
- The original goal was to try find a better way to predict the onset and strength of the scissors mode as an input for statistical model calculations

What we found instead

- **Why 30 keV MACS?**
 - There are good, evaluated experimental values
 - MACS is less sensitive to individual resonance
 - MACS is what is needed astrophysically

Experimental Cross Sections

\[\sigma_{\text{MACS}} \text{ [mb]} \]

\[\sigma_{\text{exp Trans. and Def., Nd-W, kT=30 keV}} \]
Experimental correlations are tighter than statistical model predictions

- **Why 30 keV MACS?**
 - There are good, evaluated experimental values
 - MACS is less sensitive to individual resonance
 - MACS is what is needed astrophysically

![Calculated Cross Sections](attachment:calculated_cross_sections.png)
The general trend with S_{2n} for regions of different deformation

- These are even-even nuclei, unless called out separately
- There is insufficient data for odd-Z nuclei and most odd-N nuclei
- Actinide data do not disagree with the trend
Lighter isotopes do not show this behaviour

- This is not simply level density
 - σ vs D_0 shows less tight correlation
- That being said, the regions where the correlation holds are regions of relatively high level density
- Direct capture is a small component of the cross section in the regions of tight correlation
(n,\gamma) predictions and limitations

- **The Good**
 - This is not an “accident” at 30 keV
 - We can use existing data to make predictions
 - Measurements in Pt isotopes will provide additional tests
 - In general, more measurements improve the situation
 - Uncertainties come out naturally from the uncertainty in the fit

- **The Bad**
 - Data is needed to calibrate each region
 - For odd-Z this will still require hard (n,\gamma) measurements
 - The isotopes needed simply are not stable

- **The Ugly**
 - To produce abundance predictions, we need complete, energy-dependent cross sections

Conclusions and Outlook

• There is a surprisingly strong correlation between neutron capture cross sections and nuclear masses
• We may be able to exploit this to infer unmeasured cross-sections that are challenging to measure
 • Nuclear masses are easier to measure than cross sections
• More work is needed to understand both energy dependence and odd-even effects in this framework
• There are outstanding questions as to the behaviour in nuclei where direct capture plays a significant role

• We still need to go back to investigate our original question…