

Indirect $(n,\gamma)^{91,92}$ Zr Cross Section Measurements for the s-Process

M. Guttormsen^{*a*}, S. Goriely^{*b*}, A. C. Larsen^{*a*}, A. Görgen^{*a*}, T. W. Hagen^{*a*}, T. Renstrøm^{*a*}, S. Siem^{*a*}, N. U. H. Syed^{*a*}, G. Tagliente^{*c*}, H. K. Toft^{*a*}, H. Utsunomiya^{*d*}, A. V. Voinov^{*e*}, and K. Wikan^{*a*}

^aDepartment of Physics, University of Oslo, N-0316 Oslo, Norway, ^bInstitut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium, ^cIstituto Nazionale di Fisica Nucleare, Bari, Italy, ^dDepartment of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan, ^eDepartment of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA

The playground for the nucleosynthesis is found in the interior of stars and/or in extreme cosmic events. The major contributors to creating heavier elements are the neutron capture processes [1]. The key question for these processes is whether the nuclear system after neutron absorption will keep the neutron and emitting γ rays to dissipate the energy, or will it eject the neutron or other particles/fragments and thereby producing other elements? For the *s*-process, this question is important at the so-called *branch points*, where the β^- -decay rate is comparable with the (n, γ) rate.

Nuclear level densities (NLDs) and γ -ray strength functions (γ SFs) are essential quantities in the determination of the (n, γ) rates. At the Oslo cyclotron laboratory, we have used the 92 Zr $(p, p'\gamma)^{92}$ Zr and 92 Zr $(p, d\gamma)^{91}$ Zr reactions to extract NLDs and γ SFs using the Oslo method.

These ^{91,92}Zr γ SF data [2], combined with photonuclear cross sections [3], cover the whole energy range from $E_{\gamma} \approx 1.5$ MeV up to the giant dipole resonance at $E_{\gamma} \approx 17$ MeV. The wide-range γ SF data display structures at $E_{\gamma} \approx 9.5$ MeV, compatible with a superposition of the spin-flip M1 resonance and a pygmy E1 resonance. Furthermore, the γ SF shows a minimum at $E_{\gamma} \approx 2 - 3$ MeV and an increase at lower γ -ray energies, known as upbend.

The experimentally constrained NLDs and γ SFs are shown to reproduce known (n, γ) and Maxwellian-averaged cross sections for 91,92 Zr using the TALYS reaction code, thus serving as a benchmark for this indirect method of estimating (n, γ) cross sections for Zr isotopes.

References

- [1] E. M. Burbidge, et al., Rev. Mod. Phys. 29, 547 (1957).
- [2] M. Guttormsen, et al., Phys. Rev. C96, 024313 (2017).
- [3] H. Utsunomiya, et al., Phys. Rev. Lett. **100**, 162502 (2008).