The cosmologically relevant $^7\text{Be}(n,\alpha)^4\text{He}$ reaction in view of the recent THM investigations

L. Lamiaa,b, C. Spitalera,b, C.A. Bertulania, S.Q. Houc,d, M. La Cognatab, R.G. Pizzoneb, S. Romanoa,b, M.L. Sergib, and A. Tuminob,e

aDipartimento di Fisica e Astronomia-Università di Catania (Catania, Italy),
bLaboratori Nazionali del Sud, INFN-LNS (Catania, Italy),
cDepartment of Physics and Astronomy, Texas A&M University-Commerce (TX),
dInstitute of modern Physics, Chinese Academy of Science (Lanzhou, China),
eFacolta’ di Ingegneria e Architettura, Universit degli Studi di Enna “Kore” (Enna, Italy)

The role of the unstable ^7Be during the early epoch of the Big Bang Nucleosynthesis is currently matter of study in view of the long-standing ^7Li cosmological problem [1]. Recently, the Trojan Horse Method (THM) [2] have been applied for measuring the cross section of the (n,α) reaction channel on ^7Be by means of charge-symmetry hypothesis applied to the previous $^7\text{Li}(p,\alpha)^4\text{He}$ THM data corrected for Coulomb effects. The deduced $^7\text{Be}(n,\alpha)^4\text{He}$ data overlap with the Big Bang nucleosynthesis energies and the deduced reaction rate allows us to evaluate the corresponding cosmological implications [3].

References