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Why AGB & post-AGB stars?

- They represent the last phases of low and intermediate mass stars 1<M/M 5<8:

- Tracers of intermediate age stellar populations in galaxies

- More than 50% of the material returned by all stars to the ISM come from them,
critical for GCE studies: Li, CNO, F, 26Al, >?Mg and s-elements...

- Dust producers: sources of many pre-solar grain types

- Excellent laboratories for stellar studies: mixing processes + nucleosynthesis



Observations and analysis: pros (+) & cons (-)
v AGB stars:
- Cool (T <3500 K) : molecular & dust opacities
- Variable stars: shock waves, dynamical atmospheres
- Very crowded/blended spectra: high resolution spectroscopy needed
+ They are numerous and bright (extragalactic)

v Post-AGB stars

+ Warm atmospheres (T, > 4500 K): no molecules in the spectrum
- Short life-times: very few objects (difficult to identify...)
v" Local and/or extragalactic ?

* Galactic: unknown distances, most [Fe/H]~ 0.0
* Extragalactic: well known distances, in a range of [Fe/H]

Intrinsic stars: in-situ nucleosynthesis
Extrinsic stars: element enhancements acquired from a companion (binary) star
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AGB stars: the site of the s-process main component)
v Responsible for ~ 50% of the elements beyond Fe-peak

In-situ production in stars: **Tc (t;,,~2 -105 yr) Merrill (1952)
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AGBs: test to the s-process theory
v' Abundance patterns: neutron source(s) *C(o,n); ?*Ne(o,n) > stellar mass

v's-element enhancements: efficiency of the 374 dredge-up (TDU) and mixing
[s/Fe]1 [Fe/H] |

v'The neutron exposure [hs/Is]: dependence on the metallicity

The abundance ratio between heavy-s (Ba,La,Ce...) and light-s (Sr,Y,Zr) elements [hs/lIs],
depends on thle stellar me’galliicity
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AGB stars: vtsumi 1985)

- Galactic O- & C-rich ([Fe/H]~0) AGBs show enhancements , [s/Fe| ~ 0.5
- Metal-poor AGBs in satellite galaxies show larger enhancements , [s/Fe| ~ 1-2
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The neutron exposure: [hs/Is] vs. [Fe/H] in AGB C-stars
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In O-rich AGB stars, similar agreement with theoretical models is found, however
a large dispersion exists in all AGB stars at a given [Fe/H] = 3C-pocket



Neutron source: 3°Kr-branching reveals the scenario

Lambert et al. (1995)
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N, ~10% cm, radiative 3C(o,n)'°O = low [Rb/S1,Y,Zr]

N, ~10" ¢cm, convective 22Ne(a,n)>>Mg => high [Rb/Sr,Y,Zr]



The low [Rb/Zr] ratios in AGB C-stars supports the 3C(a,n)'®O
as the main neutron source in low mass stars, M <3 Mg
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instead... the high [Rb/Zr| found in massive (M > 4 M) AGB stars,

favours the ?Ne(o,n)>°Mg reaction in these stars
Garcia-Hernandez et al. (2007), Zamora et al. (2014), Perez-Mesa et al. (2017)
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Intrinsic or extrinsic AGBs?

The Zr/Nb alternative to Tc

The Zr/Nb can be used a probe of the
S-process temperature
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Post AGB-stars

Tracers of the s-process at the end of the AGB phase...however
» Large diversity in [s/Fe] in Galactic & MCs post-AGB at a given Z (mass)

» Some do not show s-element enhancements (M < limit for TDU)
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Post-AGB stars do not show the expected correlation [hs/Is] vs. [Fe/H] ...nor the

[s/Fe] vs. C/O !I!!

&8 T 1 [

0.6 +—

—

0.4 —

0.2 —

[hs/ls]

0.0 —

r—ffp——

=02 —

-0.4 |-

—0.8 | | |

® Gal
& MC

-1.6 -1.4 -1.2 -1.0

De Smedt et al. (2015)
Van Earle et al. (2013)

Observed s-element enhancements

30

L] 2 - =3 = 10 12 14
Mumiber of third dredge—ups

e L e B e LR B B . s i .1

—————

/’T-
e
> -
o
e
1 i i i
(e =2 - = = 13 12 14

Mumbosr of third dredge—ups



J005252.87 a failed TDU post-AGB in the SMC?

T~ 8250 K, [Fe/H|=-1.2,L~8200 Ly —> | M. ~ 1.5-2.0 M,
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A new evolutionary channel in the AGB phase without TDU ??



The lead discrepancy in post-AGB

Several metal-poor post-AGB stars show much lower [Pb/Fe]| ratios than predicted
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The 19F pUZZle in AGBS Jorissen etal. (1992)

Abia et al. (2015)
v PF is produced by AGB stars... but is not the sole source Jimsson et al. (2017)
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v F has primary & secondary origin in AGBs (°C): at low metallicity
primary source dominates = large [F/Fe| are expected
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v The expected correlation with the s-element enhancements is not so clear !
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Summary & near future

" Abundance determinations in AGB and post-AGB stars are useful tools to test
current theories of nucleosynthesis in stars

" The bulk of observations in AGB and post-AGB stars can be explained from
13C and *’Ne being the main neutron sources in low and intermediate mass stars,
respectively

= Discrepancies exist between observed and predicted abundances of I, Pb,
and C/O ratios which require further theoretical and observational study

= GAIA parallaxes will allow the accurate determination of luminosities (masses)
of many AGB and post-AGB for a better comparison with theoretical models

= JWST will identify thousands of AGBs and post-AGBs in the Local Group of
galaxies....so be prepared !



