Multimessenger Astrophysics: the new era of GWs

M. Branchesi GSSI/INFN LNGS

VULCANO Workshop 2018

Frontier Objects in Astrophysics and Particle Physics

20th- 26th, May 2018 Vulcano Island, Sicily, Italy Challenges and successes of multi-messenger searches including GWs

O1 and O2 low-latency GW data analysis pipelines to promptly identify GW candidates and send GW alerts

Hunt the elusive EM-counterpart!

GCN Alerts contents to support observing startegy

significant

↑low significance FAR = 1/yr

FAR = 1/month

louder than the candidate event

Candidates to be observed selected based on the observer's choice of FAR threshold

Sky map + basic source classification

Credit: G. Greco,

https://github.com/ggreco77/GWsky

To decide the search type

DES, Annis et al. 2016, ApJL

Tiling the sky map to maximize the enclosed localization probability Burst _ failed-SNe

Search for missing supergiants in the LMC

<u>3D sky maps</u> with direction-dependent distance

(Singer et al. 2016, ApJL 829, L15)

"EM bright" indicators:

Probability of **presence of a NS** in the binary (object m<2.8 solar mass) Probability of **presence of any NS tidally disrupted mass left outside the BH** *(Foucart 2012, PhRvD, Pannarale & Ohme, 2014, ApJ)*

2015 September 14: GW150914 2015 December 26: GW151226 2017 January 04: GW170104 2017 June 06:GW170608 2017 August 14: GW170814

Black Holes of Known Mass

LIGO/VIRGO

EM signal, host galaxy?

	GW150409	GW151226	LVT151012	GW170104	GW170608
D _L /Mpc	420[+150-180]	440[+180-190]	1000[+500-500]	880[+450-390]	340[+140-140]
Sky loc/deg ²	230 (HL)	850 (HL)	1600 (HL)	1200 (HL)	860 (HL)
Abbott et al. 2016.PhysRevX.6: Abbott et al.2017.PhysRevL.118: Abbott et al. ApIL.					

2017, 851

Sky localizations 90% credible areas of about 1200 deg² GW170104 230 deg² GW150914 1600 deg² LVT15012 850 deg² GW151226

Image credit: LIGO/L. Singer/A. Mellinger

Counterpart search

Abbott et al. 2016, ApJL, 826, 13 Abbott et al. 2016, ApJS, 225, 8

2017 August 14, 10:30:43 UT

Virgo observed its first **BBH** coalescence ,GW170814

Credit: LIGO-Virgo

2017 August 14

2017 August 2017, 12:41:04 UT

Credit: University of Warwick/Mark Garlick

Time from merger (seconds)

17 August 2017, 12:41:04 UT

17:54:51

GW170817

Credit: LIGO/Virgo/NASA/Leo Singer

LVC + astronomers, ApJL, 848, L12

GW170817: PARAMETERS OF THE SOURCE

GW luminosity distance 40 (+8-18) Mpc

Viewing angle $\Theta < 55^{\circ}$ NGC4993 redshift (Ho=67.9) $\Box \Theta < 28^{\circ}$

Abbott et al. 2017, Physical Review Letters, 119, 161101

GRB 170817A

- 100 times closer than typical GRBs observed by Fermi-GBM
- it is also "subluminous" compared to the population of long/short GRBs
- 10² 10⁶ less energetic than other short GRBs

Abbott et al. 2017, APJL, 848, L13

Intrinsecally sub-luminous event or a classical short GRBs viewed off-axis?

UV/Optical/NIR Light Curves

Extremely well characterized photometry of a Kilonova: thermal emission by radiocative decay of heavy elements sythetized in multicomponent (2-3) ejecta! ESO-VLT/X-Shooter

Smartt et al. 2017, Nature

Multi-component kilonova emission (Pian et al. 2017, Nature, 551, 57)

At present models are not able to reproduce consistently all the observed spectral features

X-ray and radio emissions

Chandra observation

"..Our observations are instead consistent with the onset of an off axis afterglow from the GRB jet. This would explain the low luminosity of the observed gamma-ray emission, and the lack of early afterglow detections."

VLA observation

Troja, et al. Nature 2017

First GRB observed off-axis?

Hallinan et al. Science, 2017

After 100 days from the BNS merger...

Margutti et al. 2018, ApJL

Power-law spectrum extending for eight orders of magnitude in frequency

What is the nature of the mildly relativistic ejecta?

Structured-jet viewed off-axis (e.g Margutti et al. 2018, D'Avanzo et al. 2018)

Isotropic fireball: choked jet or jet-less (e.g. Kasliwal 2017, Mooley et al. 2017, Salafia et al. 2017)

Flattening of light curves....

Dashed lines

Solid lines

D'Avanzo et al. 2017, A&A accepted

Polarimetry? Rate GW/GRB 170817-like association? See Troja's talk!

HST/WFC3 F475W/F606W/F814W

log(M*/Msol) ~10.65 Median age ~ 11.2 Gyr SFR ~ 0.01 Msol yr⁻¹ Blanchard et al. 2017

Levan et al. 2017, ApJL, 848

S0 galaxy at z = 0.009783

- Face-on spiral shells and edge-on spiral features → recent (< 1 Gyr) galaxy merger
- HST imaging \rightarrow **no globular or young stellar clusters**
- Old population in the vicinity of GW source
- Age and offset from the galaxy center \rightarrow small natal kick velocity

Multimessenger science

GRB/GW FUNDAMENTAL PHYSICS/COSMOLOGY

1.7 s delay and 40 Mpc distance
→ difference speed of gravity and speed of light between
-3 × 10⁻¹⁵ and +7 × 10⁻¹⁶
GWs propagate at the speed of light!
LVC 2017, APJL, 848, L13

Consequences of multi-messenger detection of GW170817 for cosmology Constraint on the speed of GWs ruled out many classes of modified gravity models (quartic/quintic Galileons, TeVeS, MOND-like theories, see, e.g., Baker et al. '17, Creminelli & Vernizzi '17)

NS LABORATORY FOR STUDYING SUPER-DENSE MATTER

TIDAL DEFORMABILITY

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

👝 Ejected, disk mass 👝 EM emission

Post merger remnant?

Haviest NS or lightest BH known?

Remnant _ EM emission

GW search:

- ringdown of BH around 6 kHz
 LIGO/Virgo response strongly reduced
- short (tens of ms) and intermediate duration (≤ 500 s) GW signals up to 4 kHz
 □ no evidence of postmerger signals, but it cannot rule out short- or long-lived NS

Multimessenger constraints on nuclear EOS

Simulations in NR

EM observations exclude very soft EOS!

EM observations \square Mej,tot > 0.05Mo suggests a lower limit Λ > 400

Radice, Perego, Zappa 2017

EM constraints on the type of remnant and multi-messenger constraints on radii and maximum mass of NSs

GRAVITATIONAL-WAVE COSMOLOGY

-0.4

Abbott et al. 2017, Nature, 551, 85A

Era of precision GW-cosmology

- BNS standard sirens with EM measurement of the redshift
- Only BNS GW detections statistical case, using crosscorrelation with potential host galaxies within the localization volumes
 Chen+ 2017, arXiv:1712.06531

~ 10/60/200 BNS with EM counterpart $_$ H0 constrained to 4/2/1% ~ 100 detections of BNS (~ 30 golden events) $_$ H0 constrained to 4

To improve H0 estimate:

- Using inclination information from kilonova / afterglow models
- Break the degeneracy inclination/distance with preicise measure of the host galaxy distance (e.g. Surface brightness fluctuation distance error less then 5%, Cantiello+ 2017)

Astrophysical rate

Expected detection rate for O3NS-NSNS-BHBH-BH 9^{+19}_{-7} 1^{+28}_{-1} 35^{+78}_{-26}

LIGO BNS range 120 Mpc Virgo BNS range 65 Mpc

Credit: C.Pankow for LVC, MIT and Amsterdam Town Hall Meetings

From Next run: the LIGO and Virgo collaboration will release open public alerts (OPAs) for all event candidates in which we have a reasonable confidence and we consider to likely to be real

Goals of OPA

- ☐ To maximize the science the entire scientific community can do with the GW detections
- \rightarrow To minimize the chance of missing EM/neutrino counterparts

The alerts will look a lot like events in O1 and O2, except that they will all be instantly public

LVC will issue automated preliminary alerts, prior to vetting, with minimal latency

This is only the birth of GW astronomy......

Coalescence of binary system of neutron stars and/or stellar-mass black-hole

Isolated neutron-star

Core-collapse of massive stars

Unexpected....

EXTRA

Credit: C.Pankow for LVC, MIT and Amsterdam Town Hall Meetings