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Nuclear and Particle Physics, Astrophysics, and Cosmology

r-Process

Most Elements above
the iron peak are
believed to be produced
through neutron capture.
The two extremes are s-
process - the neutron
capture timescale is
much longer (slower)
than the decay
timescale and r-process
- neutron capture rate is
much faster (more rapid)
than the decay
timescale.
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Sites of r-Process: NS Winds, Jets, & Neutron Star Mergers

Qian, Woosley and collaborators
studied neutrino driven winds
from neutron stars. With a
simple trajectory evolution , T=T,
el-1-28/texp) they determined the
conditions needed to produce
the 3" r-process peak.
Hoffman et al. (1997)
determined that either high
entropy, low Y, or fast
expansion timescales were
needed to produce the r-
process. Based on this,
Thompson and ud-Doula (2018)
derived a figure of merit for r-
process production: S3/(Y. >t
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r-Process in Neutron Star Mergers

Dynamical
Ejecta: Y,
is low,
much
easier to
make a
relatively
clean r-
process
abundance
profile
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GW1708 17 August 17, 2017: First detection of a GW event in EM
spectrum: over 200 papers since November!!!
 Can probe ejecta composition! Dominant r-
process site?
 Changing our understanding of jet structures.
Ejecta—ISM Shock® Rate is high! With LIGO improvements (running in
Radio (years) the fall), we expect 10s of events per year.
 Can we understand these mergers well enough to
pinpoint the Yi(.eld.s.?,

" Wind + dynamical ejecta, orientation: 8= 20°
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Inferred Rate from GW170817 matches what is needed
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Current population synthesis models argue for a t™* profile. Are we missing something?
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Neutron Star Mergers
and Galactic Chemical
Evolution
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Modifications to the predicted time-dependent
merger rate may be needed to match the data.
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Other
Solutions
exist, but
not without
going
beyond
what the
population
synthesis
models
predict.
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Table 1. Estimates of Ejected Masses for High-opacity Lanthanide-rich Material (mgyn) and
Medium-opacity “Winds" (m,), Sourced from the Recent Literature for GW170817

* Depending upon the light- ReE Mom¥al 1Mol
curve and spectral models, AR R T
the amount of wind vs. Arcavi et al. (2017) o 002-0025
dynamical ejecta varies Cowperthwaite et al. (2017)  0.04 0.01
considerably. Chornock et al. (2017) 0.035 0.02
* The dynamical ejecta is Evans et . (2017) 0.002-003  0.03-0.1
neutron rich and produces Kasen et al. (2017) 0.04 0025
. . . . d
the right distribution of 2" ST — 002 2003
rd _
and 3" r-process peaks. it signe 003
* BUt If there 1S d IOt Of Wlnd Perego et al. (2017) 0.005-0.01 107> - 0.024
ejecta that produces
. Rosswog et al. (2017) 0.01 0.03
predominantly 15t and 2"
. Smartt et al. (2017) 0.03-0.05 0.018
peaks, can we explain the
. Tanaka et al. (2017) 0.01 0.03
r-process yields?
Tanvir et al. (2017) 0.002-0.01 0.015

Troja et al. (2017) 0.001-0.01 0.015-0.03




Nuclear Physics problem

* Understanding the relative production of r-process =
depends on the nature of the ejecta (wind versus |
dynamical ejecta) and the clean signal from
neutron star mergers may not be so clean.

* Uncertainties in the nuclear physics can also
drastically alter the yields.
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Fission rates (multi-
chance beta-delayed
fusion and reaction
rates) are active
areas of research.
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Nuclear matter, neutrino, nuclear reaction
and atomic physics all feed into simulation

program (engines and emission models).

The RAPTOR-P telescope has a 500 sg-degree
field-of-view and can simultaneously cover
Engines provide characteristics the full LIGO and Fermi boxes for early optical

(velocities, densities, emission starting about 6 seconds after the
compositions) for emission models receipt of event trigger.
Simulations
st , ¥ . - guide filters
f- tom veew - ; and observing
Shd. : strategies.

Observations validate

13 eam ) s 3 theory.
Preliminary study of a turbulent 2 -

magnetically driven accretion flow = 34 . Spectra for one of our multi-
of an accretion disk formed of - dimensional transport models
neutron star material after the in- ‘ at 1 day over a range of

spiral and coalescence of two b Pk sy Model: X2nh viewing angles (Wollaeger et

neutron stars. \ . S ' o =% al. 2018)



