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Extended Theories of Gravity

Extended Theories of Gravity work very well in cosmology at early and
late epochs to address Inflation and Dark Energy issues

-A.A. Starobinsky, Phys. Lett.B991,99 (1980)
-S. Capozziello, M. De Laurentis, Phys. Rep. 509,167 (2011),
-S. Nojiri, S.D. Odintsov, Phys. Rep. 505,59 (2011).

They have been proposed to explain galactic and extragalactic dynamics
without mtroducing dark matter. PLANCK data do not exclude these
theories (PLANCK release 2015).

As simple choice, one assumes a generic function f(R) of the Ricci scalar
R (in particular, analytic functions) and searches for a theory of gravity
having suitable behavior at small and large scale lengths.

These theories need to be confirmed at different scales: for short
distances, Solar system, spiral galaxies and galaxy clusters, besides
cosmology

S. Capozziello, M. De Laurentis, Annalen der Physik 524,545 (2012).



Motivations

Explaining the observed galactic and extragalactic dynamics using
gravitational potentials derived from Extended Gravity without DM..

o Possible new fundamental gravitational radii which play analogue role
in the case of weak gravitational field at galactic scales, as the
Schwarzschild radius for strong gravitational field in the vicinity of some
massive object (we have IR and UV gravitational radii).

o New gravitational radii come from the further degrees of freedom of
Extended Gravity.

o Explaining extragalactic phenomena, such as the baryonic Tully-Fisher
relation (BFT) of gas-rich galaxies and the fundamental plane (FP) of
elliptical galaxies withoutthe DM hypothesis.



J(R) gravity

Let us start from the action
A= /d4a:\/—g f(R)+ L]

The field equations are

1
R’w/ — §QW/R —
T

f'(R)

— f/(lR) {%g/w [f(R) o Rf,(R)] + f/(R);/W o g/WDf/(R)} +

Let us consider power - law case f(R) = foR"

with fo a dimensional constant.



J(R) gravity

» An important point is related to the choice of the power-law action for f(R)
that could appear non-natural in order to discuss deviations with respect to
GR. Being n any real number, 1t 1s always possible to recast the f(R) power-

law function as
f(R) x R'*

» If we assume small deviation with respect to GR, that is [¢] << 1, it is
possible to re-write a first-order Taylor expansion as

R ~ R + e¢RlogR + O(¢?)

» one can control the magnitude of the corrections with respect to the
Einstein gravity. This Lagrangian has been mvestigated from Solar System
up to cosmological scales. In particular, applications to gravitational waves
(Capozziello et al. 2008, Astropart. Phys.), bmary star systems (De
Laurentis et al. 2012, MNRAS), and neutron stars have been investigated
(Astashenok, Capozziello, Odintsov 2014, PRD, 2015 JCAP).



J(R) gravity

Taking into account the gravitational field generated by a pointlike source
and solving the field equations in the vacuum case, we write the metric as:

ds* = A(r)dt* — B(r)dr? — r*dQ?

Combining the 00 — vacuum component and the trace of the field equations
in absence of matter, we get the equation:

R 1 "(R).
it reduces to: 400 900
2n — 1 n—1dA(r)dln R(r)
_ A _
Roo(r) 6n (r)R(r) 2B(r) dr dr
and the trace equation reads: )
OR™(r) = —R"(r)

3n



J(R) gravity

Expressing Roo and R in terms of the above metric, field equations become a
system of differential equations for A(7) and B(r).

A physically motivated hypothesis 1s assuming

1 2®(r)
A — p— 1
(r) =% O
A general solution is - 57
d(r) = _G_m 1+ r
2r e

The parameter 1s:

B 12n2 —Tn — 1 — /36n4 + 12n3 — 83n2 + 50n + 1

b 6n2 — 4n + 2

Let us search now for a fundamental motivation for power-law f(R) gravity



The Noether Symmetry Approach

Let us assume a static spherically symmetric metric of the form

ds® = A(r)c*dt* — B(r)dr® — C(r)dQ?
We recast the action considering the dimensionless curvature y =R/R,

C3

A= g5 [ 00 =M= 0l v=gd'a

The Ricci scalar can be expressed as
- A 20" A C! A/Q 0/2 9
R=—+—+
A C AC  2A%2 20° C
where the prime is the derivative with respect to ». Varying with respect to y
gives the Lagrange multinlier
dy =~ 7




The Noether Symmetry Approach

The point-like Lagrangian reduces to
L%\/l AfX 0/2
JA | 2C

—VA[2LY + Cx)fy — Cf]

Assuming the regime R. >> r and the related weak field approximation, the
last two terms are both much smaller than L,/ f,. This allows to rewrite the
Lagrangian as

+ [LA'C' 4+ Cfo y A+ 2A £, C'X | +

L. =
L?W AfX 0/2

T |50 RAC + CLo A+ 240, CX + 24




The Noether Symmetry Approach

Solving the Noether vector equation means to find out the functions o;
which constitute the components of the Noether vector

LxL=a;VyL+a,V,L=0

0 + « 9
8q; ' Oq.

X:Oé?;

A general form of the Noether vector, related to the Killing equations of the
model, 1s:

] = k1A+p17
gy = koC + pa,
a3 = k3Xx + p3.

where k;, p; are constants



The Noether Symmetry Approach

The Lie condition 1s satisfied for

= {2(1 —n)kA, 0, /cx}, fix) =x"
Thatis for any f(R)= R" a Noether Symmetry exists !

The related constant of motion Xy 1s

Z() = Oéiqu{L
= L% n(n—1)kEA 120y 2[2(n — 1) A — A’X]

In the case of MOND, for n = 3/2, C(r) = #° and, at the lowest order of
perturbation, A(r) = 1 + 2®/c?, the constant of motion is given by

3
Do = §kr§zM




Extended gravity and flat rotation curves of spiral galaxies
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Observational constraints for r. from BTF relation
and circular velocity

» Starting from the above solution, an excellent agreement between
theoretical and observed rotation curves of low surface brightness
galaxies has been obtained for f=0.817.

» This can be framed into the BTF relation with the aim to show that the
new fundamental gravitational radius r. can account for missing matter in
galaxies.

» Specifically, the empirical BTF relation is a universal relationship
between the baryonic mass of a galaxy and its rotational velocity of the
form Mp o< v.* This follows from the fact that luminosity L traces
baryonic mass Mp through the mass-to-light ratio y. The BTF relation can
be recovered from power-law f(R) gravity.



The data from the Baryonic Tully-Fisher
relation of gas rich galaxies as a test for
ACDM and MOND considering

D - distance of the galaxy,

V. - rotational velocity,

M+ - mass of the stars,

M, - mass of the gas

(we used observational data from
McGaugh, PRL (2011), which are given
at the internet address:
http://www.astro.umd.edu/~ssm/data/
gasrichdatatable.txt)
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Observational constraints for r. from BTF relation
and circular velocity

Circular velocity of a pomnt mass, in the R” gravity potential, can be found
in the standard way, that is

dd
20\ _
vi(r) = Tdr
whichgives am | r\ P
— 1 1 — —
=G [rea-n (5

(For a detailed explanation see Capozziello et al., MNRAS (2007)



Observational constraints for r. from BTF relation
and circular velocity

Considering the Newtonian limit of f{R) gravity and discarding higher order
terms than O(2), the field equations for a perfect-fluild energy-momentum

tensor of dust (p = 0) become:
Ve — —— — f(0)V2R® = Xxp

—3f"(0)V2R® — R® = xp

p - the mass density

X =87G/c* - the gravitational coupling
R® - the Ricci scalar assumed up to the second order approximation



Observational constraints for r. from BTF relation
and circular velocity

Let us proceed step by step to demonstrate that BTF i1s given by the
gravitational radius r,.

1. the Noether symmetries select a power-law for f(R) gravity. This is the
only general form of f(R) function showing symmetries.

2. In particular, we assume f{y) = x", after introducing the dimensionless
quantity y := Ly/R, where R is the Ricci scalar, Ly is the length fixed by the

parameters of the theory, and » any real number.



Observational constraints for r. from BTF relation
and circular velocity

3. Thetrace of field Eqs. can be rewritten as

P00 X = 2000 + 3L3 Af () = 90T

By substituting the power-law, it becomes:
X" 8tGML3,
742 62 7«3
Here, we are assuming the weak field approximation with d/dy ~ 1/y,
A~ —1/r2 , and matter density p ~ M/r.

The second term in the 1. h.s. of this Eq. 5 3n
is larger than the first if Rr® < 5 _ 1

In this approximation, the Ricci scalar corresponds to the Gaussian
curvature and then R = R.? where R, is the Gauss curvature radius.
Immediately we have R. >> r, and then 8nG M

3nc27"L2(n 1)

2

X" (n —2) — 3nL5,

R(n_l) ~ —




Observational constraints for r. from BTF relation

and circular velocity
4. At the second order, the Ricci scalar 1s R — _zvz P — EV - a

that can be approximated as R = —2®/(c2r2) = 2al/(c2r), with @ the
gravitational potential and a the acceleration. This gives:

c2r 87TGM> 1/(n=1)
ol

a =~ 5
3nc4r

~ _C(2n—4)/(n—1)r(n—2)/(n—1)L]Tf (GM)l/(n—l)

which converges to a MOND-like acceleration a o< 1/r ifn —2=—(n—1),
that means n = 3/2.

(aoGM)1/2
r

In other words, the weak field limit of AR) power-law gravity gives MOND
as a particular case.

5. With this value of n, we get the MOND relation g =~ —




Observational constraints for r. from BTF relation
and circular velocity

According to this derivation, the above characteristic length r. of R gravity
can be related to the MOND acceleration constant ap using the following
expression GM
Te =4 ——
ao
Assuming that rotation curve 1s flat within the measurement uncertainties at
some finite radius rg 1.€. vo(ry = vy, then rrcould be also related to a certain

MOND acceleration ar> ao. This gives VagGM ao
T = = — T,
af af
Hence, the BTF relation of R" gravity expressed in terms of MOND
accelerations 1s dagvi
M = /

Ga% |1+ (1 p) (ﬂy-




Observational constraints for r. from BTF relation
and circular velocity

We have to pomt out that, in the case of BTFR for spiral galaxies,
McGaugh (2011) has shown tha,t mstead of standard MOND acceleration

constant ag, one should use a slightly different, empirically calibrated

constant a (where ag = 0.8a), while the formula 1s unchanged. Therefore, for
our calculations, we use the following expression:

1
4avf

Ga% |1+ (1 p) (iy
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Observational constraints for r. from BTF relation

and circular velocity
- we draw these lines at M (v graph:

(i) MOND M, =v/(a g)

(1) R" My =4 avit/(g ai> (1 + (1-f) (alar)’)?)
three R" cases: n=3/2,2,7/2 (correspondto 5 =0.518,0.667,0.817)
ao - constant for point source in infinity
a - constant for spiral systems
In the case of spiral galaxies, we have a instead of ag
empirical calibration is ap = 0.8a

- formula for ACDM 1s taken from the paper McGaugh 2012, AlJ:
M,y = (4.6 -10° My, km= 83) v;,2
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Comparison between best fit BTF relations of gas-rich galaxies (for a
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The Fundamental Plane of Galaxies

log v,.

The three parameters of FP: surface brightness I, effective radius r. and
circular velocity v, for a sample of elliptical galaxies from Burstein et al 1997.



Basic theory of Fundamental Plane

The Fundamental

relation  between  the
properties of these galaxies:

logre=alog oo+ blogl.+c

r. - effective (half-light) radius (the
radius within which half of the

galaxy’s luminosity 1s contained)
oo - central velocity dispersion

I. - mean surface brightness within
the effective radius

Plane of
elliptical galaxies 1s an empirical
global

- there 1s the so-called "tilt" of the
fundamental plane, with respect to
the wvmial plane expectation,
meaning that the coefficients of its
equation (a,b,c) differ from those
predicted by virial theorem (VT):
when written in logarithmic form,
the two planes appear to be tilted
by an angle of ~ 15° .

- VT prediction:a=2,b=-1
- Estimates from data (Bender et
al. 1992): a=1.4,b=-0.85

(see e.g.: G. Busarello, M. Capaccioli, S. Capozziello, G. Longo, E. Puddu,
The relation between the virial theorem and the fundamental plane of
elliptical galaxies, Astron. Astrophys. 320,415 (1997))



Recovering the fundamental plane from f(R)

-To recover the FP using R" gravity, we have to find relations between FP
parameters and values of f(R) potential. In this sense, the three addends of FP
have to be connected to f(R) parameters:

1. addend with re: correlation between re and r¢ (re — from R” potential)

2. addend with &9: correlation between a9 and vvir (Vvir - Virial velocity in R")

3. addend with I.: correlation between Ie and re (through the re/re ratio)

- for the mass distribution, we take into account the Hernquist profile:

p(t)=aM/Qmur(r+a)?),wherea=rd/(1+2)

see L. Hernquist, ApJ 356,359 (1990)



The Data

- We use the data given in Table I by Burstein, Bender, Faber,
Nolthenius, Global relationships among the physical properties of stellar
systems, Astron.]J. 114,1365(1997).

These data are the result of the collected efforts over the years

- data in ASCI format are given in table 'metaplanetabl’ see
arX1v:astro-ph/9707037

Obj Obj Dist log Ve logo, logr, logl,
Name ID# Code (Mpc) Obs Used (kpc) Lopc™?

column (5):log ve (km/s) Mm@ 6 @ 6 ® D ®
NGC 221 8 1 0.7 1903 1903 —0.95 3.47

column (6).10g (7])] (km/S) NGC 315 14 1 1072 2546 2546 149 186
NGC 720 56 1 358 2392 2392 0.84 234

column (7);10g e (kpc) NGC777 64 1 994 2542 2542 113 2.16
NGC 821 67 1 377 2298 2298 092 206

1

NGC 1399 100 264 2491 2491 074 253

column (8):log I (Lsun/pc?)

for elliptical galaxies, the circular velocity mside effective radius 1s ve(r.)
= 09, for other stellar systems v¢ # o9



Results

- we plot the graph v, (r.) for ellipticals and for other galaxies

450 l . . Newtonian

400 | ellipticals * ¢  contribution
other gal. *

correction term from f(R)

80 100

Circular velocity ve as a function of effective radius re for a sample of
galaxies listed in Table 1 by Burstein et al 1997.



Results

The empirical FP relation log r. =a log oo + b logl. + ¢ fromf(R)

re - effective (half-
light) rad1us

oo - central velocity
dispersion

I. - mean surface
brightness within 7,

FP of elliptical
galaxies with
calculated circular
velocity:
dependence of FP
parameters (a,b) on
parameters of f(R)

gravity.

a log vctheor +blogl,

| B=08

r. /1, =0.001

r./r,=0.01

| p=os

a=1.60

b =-0.62

b =-0.30

0.1 |

10




Discussion and Conclusions

» We used power-law f(R) gravity to demonstrate the existence of a new
fundamental gravitational radius.

» This radius plays an analog role, in the case of weak gravitational field at
galactic scales (IR scales) as the Schwarzschild radius in the case of
strong gravitational field in the vicinity of compact massive objects (UV
scales).

» The radius emerges as a conserved quantity from Noether’s symmetries
that exist for any power-law f(R) function.

» Using this new gravitational radius, f(R) gravity is able to explain the

baryonic Tully-Fisher relation of gas-rich galaxies without DM
hypothesis.

» MOND is a particular case of f(R) gravity in the weak field limit.



Discussion and Conclusions

» The same radius is useful to address the FP of elliptical galaxies.

» The range 0.5< < 0.8 (corresponding to 1.5 <n <3.5)is in a good
agreement with observations. These values agree with observational
constraints on /S obtained by fitting FP and MOND. We do not need
DM to explain baryonic Tully-Fisher relation, and even more, ACDM 1s
not in satisfactory agreement with observations.

» For elliptical galaxies r. is proportional to re

» Considering the definition of re, we can say that the effective radius
(defined photometrically as the radius containing half of the luminosity
of a galaxy) 1s led by gravity.

» In perspective, the whole galactic dynamics can be addressed by
Extended Gravity.

» Work in progress for Faber-Jackson relation, galactic potentials,
Boltzmann-Vlasov relation, and Virial Theorem.
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