IN A GALAXY FAR FAR AWAY... The mystery of Fast Radio Bursts

Marta Burgay

IN A GALAXY FAR FAR AWAY... The mystery of Fast Radio Bursts

Marta Burgay

DISPERSION OF A RADIO SIGNAL

Travelling through an ionised medium, radio waves arrive earlier at higher frequencies.

$$dt = 4.15 \left(\frac{1}{\nu_1^2} - \frac{1}{\nu_2^2} \right) DM$$
 ms,

$$DM = \int_0^d n_e \, ds$$

PULSARS' DM

PULSARS' DM

2007: THE LORIMER BURST

2007: THE LORIMER BURST

2007: THE LORIMER BURST

First case of detection of an extragalactic dispersed radio burst

2013: THE DISCOVERY OF A POPULATION OF FAST RADIO BURSTS

A Population of Fast Radio Bursts at Cosmological Distances

D. Thornton,^{1,2*} B. Stappers,¹ M. Bailes,^{3,4} B. Barsdell,^{3,4} S. Bates,⁵ N. D. R. Bhat,^{3,4,6} M. Burgay,⁷ S. Burke-Spolaor,⁸ D. J. Champion,⁹ P. Coster,^{2,3} N. D'Amico,^{10,7} A. Jameson,^{3,4} S. Johnston,² M. Keith,² M. Kramer,^{9,1} L. Levin,⁵ S. Milia,⁷ C. Ng,⁹ A. Possenti,⁷ W. van Straten^{3,4}

Published in Science, Vol. 340, Issue 6141 (5th July 2013)

2013: THE DISCOVERY OF A POPULATION OF FAST RADIO BURSTS

A Population of Fast Radio Bursts at Cosmological Distances

D. Thornton,^{1,2*} B. Stappers,¹ M. Bailes,^{3,4} B. Barsdell,^{3,4} S. Bates,⁵ N. D. R. Bhat,^{3,4,6} M. Burgay,⁷ S. Burke-Spolaor,⁸ D. J. Champion,⁹ P. Coster,^{2,3} N. D'Amico,^{10,7} A. Jameson,^{3,4} S. Johnston,² M. Keith,² M. Kramer,^{9,1} L. Levin,⁵ S. Milia,⁷ C. Ng,⁹ A. Possenti,⁷ W. van Straten^{3,4}

Published in Science, Vol. 340, Issue 6141 (5th July 2013)

MORE FRBS FROM MORE TELESCOPES!

Dense magnetized plasma associated with a fast radio burst

Kiyoshi Masui^{1,2}, Hsiu-Hsien Lin³, Jonathan Sievers^{4,5}, Christopher J. Anderson⁶, Tzu-Ching Chang Xuelei Chen^{8,3}, Apratim Gangaly¹⁰, Miranda Jarvis¹¹, Cheng-Yu Kuo^{12,7}, Yi-Chao Li⁸, Yu-Wei Liao⁷, Maura McLaughlin¹³, Ue-Li Pen^{14,2,15}, Jeffrey B. Peterson³, Alexander Roman³, Peter T. Timbie⁶, Tabitha Voytek^{4,3} & Jaswant K. Yadav³⁶

THE OFFICIAL CATALOGUE OF PUBLISHED FRBS

🚵 FRB Catalogue

This catalogue contains up to date information for the published population of Fast Radio Bursts (FRBs). This site is maintained by the FRBCAT team and is updated as rew sources are published or refined numbers become available. Sources can now be added to the FRBCAT automatically via the VOEvent Network, details of this process are given in Petroff et al., 2017. FRBs confirmed via publication, or received with a high importance score over the VOEvent Network, are given 'Verified' status and are shown on the default homepage; to see all events (including unverified candidates received via the VOEvent Network) toggle the 'Show all/Show verified' button below.

Information for each burst is divided into two categories: intrinsic properties measured using the available data, and derived parameters produced using a model. Cosmological values are obtained using the Cosmology Calculator (Might, 2006). The intrinsic parameters should be taken as lower limits, as the position within the telescope beam may be uncertain. Where multiple fits or measurements of a burst have been made each one is provided as a separate sub-entry for the FRB.

You may use the data presented in this catalogue for publications; however, we ask that you cite the paper [Petroff et al., 2016] and provide the url (http://www.frbcat.org). Any issues relating to the use of the catalogue should be addressed to FRBCAT team (primary contact; Emily Petroff).

v	sible columns	Show verified A Export to CSV					0	Dearth Clear		
	rna -	Telescope · -	MJ	DECJ	GL	68	Centre frequ	DM	With	SNR
+	FR8171209	Parties	10.00.25	-48:10:20	332.2	6.24	1302	1458	2.5	40
+	FR0170922	UTMOST	21:29:50.61	-07:59:40.49	45.1	-06.7	605	1111	26	22
+	FR8170827	UTMOST	00:49:18.66	-65:33:02.3	908.2	-61.7	805	176.4±0	0.4	90
+	FR0170107	ASKAP	11,23,10	-05:01	266	51.4	1320	609.5+0.5	2.6	16
+	FREIMONDE	UTMOST	07:38:42	-40.47.52	254.11	-9.54	843	682+7	9	12
+	FRB180410	UTMOST	084125	08/05/05	220.38	27.18	843	278+3	4	13
٠	PTR5160317	UTMOST	075347	-79.36.31	246.05	-0.99	843	1165+11	21	13
+	FR8160102	Parkos	22:38:49	-30:10:50	18.9	-60.8	1952	2596.1µ0.0	3.4	16
+	FR8151290	Parkes	09:40:50	-08:27:05	299	34.8	1952	960.4±0.5	4.4	17
+	FR8151206	Parties	19:21:25	-04/07:04	32.6	-8.5	1852	1909.8±0.6	3	10
+	FR0150807	parkes	22:42:01	-50:04:42	303.002	-53.5959	1052	206.5u0.1	0.35	0
+	FR8150610	Parkas	10.44.28	-40:05:23	278	18.5	1562	1593.0+0.6	2	18
+	FTI0150418	perses	07:18:35	-18:00:40	232.665	-3.2548	1352	776.2+0.5	0.8	39
+	FRB150215	parties	18.17.27	-04.54.15	24.8628	5.28092	1352	1105-8+0.8	2.88	19
+	FRB140514	peries	22:34:08	-12:18:48	50.8413	-54.812	1362	562.7+0.8	2.8	18
+	FR0131104	parkes	064410	-51:16:40	280.55	-21.8253	1352	779+1	2.08	30
+	FRB130729	parkas	13:41:21	-05:59:43	324,788	54.7448	1352	061+2	15.61	54
+	FRB130628	peries	09-03-02	03/28/18	225.855	30.6556	1362	489.88+0.01	0.64	29
+	FR8130625	parkes	16:27:06	-07:27:48	7.45008	27,4203	1852	952.4±0.1	1.98	21
+	FRB121102	arecibo	05.32.09	33:00:13	174.95	-0.225138	1875	057±2	3	14
+	FRB121002	parkes	10:14:67	-80:11:53	909.22	-26.2647	1952	1629.1840.02	5.44	16
+	FR8120127	parkes	23:15:06	-18:25:38	49.2971	-66.2087	1852	658.9±0.3	5.5	11
+	FR8110708	parkes	23:30:51	-02.52.24	80.9978	-08.0191	1852	1103.6±0.7	4.3	16
+	FRB110626	parkes	21:00:43	-44:44:19	355.962	-41.7522	1952	72940.3	1.4	11
+	FR8110523	GBT	21.45:12	-00-09-37	58.12	-37.82	800	623.3+0.08	1.73	42
+	FR8110220	parkes	72:34:38	-12:23:45	53.629	-54.7883	1352	944.38+0.05	5.6	49
+	FFID080625	parkes	03/07:47	-29.55.56	226.444	-60.0303	1352	899.55=0.01	1.92	30
+	FR8010724	parkas	01:18:08	-751218	300.653	-61.8051	1324	325	5	23
+	FR8010821	perses	18:52:05	-08/29/35	25.434	-4.00381	1374	745+10	7	16.3
+	FRECTO125	parkes	19:05:53	-40:37:14	356.641	-20.0208	1372.5	790+3	8.4	17

frbcat.org

OBSERVATIONAL FEATURES

• Fluence at 1.4 GHz \approx 0.1-10 Jansky * ms

[Thornton et al 2013, Spitler et al 2014, Masui et al 2015, Keane et al 2016, Champion et al 2016, FRB catalogue]

DISTANCE FROM THE DISPERSION DELAY

If the frequency dependent arrival time of the FRBs is due to dispersion in a cold plasma, it is possible to use the observed DM to constrain the distance of the source.

Building up on pioneering works of [Ioka 2003] and [Inoue 2004], one can write the relation between DM, the Luminosity Distance DL, the redshift z, the matter density parameter in the universe Ω_m , the mean number density n_0 of nucleons at z=0 and fe ≈ 0.88 at low redshift

DM $\cong n_0 f_e D_L \left[1 + 0.932z + (0.16\Omega_m - 0.078)z^2 \right]^{-0.5}$

which has an accuracy $\leq 0.5\%$ for 0 < z < 3 with $0.25 < \Omega_m < 0.35$

DERIVED FEATURES

Given the observed parameters

Assuming that the extra-DM is mainly due to the Inter Galactic Medium, one can derive the following additional parameters:

Red-shift0.2 < z < 2.0 (IGM from [Ioka 2003;Inoue 2004])Co-moving distance1 < D (Gpc) < 3</td>Isotropic emitted energy $10^{38} < \text{Eiso}$ (erg) < 10^{40} Brightness temperature $10^{33} < T$ (K) < 10^{36} Event Rate $10^{3;4}$ per sky per day ($10^{-2;-3}$ per galaxy per year)

- Bursts from corona of very nearby flare stars [Loeb et al. 2013]
- Asteroid/Planet/WD magnetosphere interaction with the wind from a orbited pulsar/NS [Mottez & Zarka 2014]
- Core Collapse SuperNovae, [Thornton et al 2013]
- Binary WD merger to highly magnetic rapidly spinning WD [Kashiyama et al 2013]
- Binary Neutron Star merger; short hard GRBs [Keane et al. 2012, Totani et al 2013, Zhang et al 2014]
- Evaporating primordial BH [Keane et al 2012]
- BH to WH quantum transition [Haggard & Rovelli 2014]
- Collisions btw axion stars and neutron stars [Iwazaki 2014]
- Explosive decay of axion miniclusters [Tkachev 2014]
- Superconducting cosmic string (SCS) loops [Cai et al. 2012] oscillating in cosmic magnetic fields [Yu et al 2014]
- Blitzar: Collapse to BH of a supramassive NS [Falcke & Rezzolla 2014] from an original scenario of [Vietri & Stella 2000]
- Magnetar giant flares [Popov & Postnov 2010, Thornton et al 2013]
- Hyper Pulses from extra-galactic NSs [Cordes & Wasserman 2016]
- Pulsar magnetorsphere "combed" by plasma stream (AGN, SN, GRB,...) [Egorov & Postnov 2009; Zhang 2017]

- measure the density of the ionised component of the IGM [Zheng et al. 2014]
- measure the missing baryonic matter in the Universe [MacQuinn 2014]]

- measure the density of the ionised component of the IGM [Zheng et al. 2014]
- measure the missing baryonic matter in the Universe [MacQuinn 2014]]
- probe the era of Helium re-ionisation at $z \approx 3$ [Zheng et al. 2014]

- measure the density of the ionised component of the IGM [Zheng et al. 2014]
- measure the missing baryonic matter in the Universe [MacQuinn 2014]]
- probe the era of Helium re-ionisation at $z \approx 3$ [Zheng et al. 2014]
- constrain the EoS of the "dark energy" [Gao et al 2014; Zhou et al 2014]
- put constraints to fundamental quantities and laws [Wei et al 2015]
- put limits to the existence of floating MACHO-like objects in the IGM via gravitational lensing [Zheng et al. 2014]
- 3D clustering of the electrons in the Universe, with > 10000 FRBs, even without redshift [Masui & Sigurdson 2015]
- put limits to the fraction of "dark matter" in MACHO of >20M_☉ via counting the number of echoes due to gravitational lensing [Munoz et al 2016]

HOW TO TRACK AN FRB TO ITS GALAXY FAR FAR AWAY?

HOW TO TRACK AN FRB TO ITS GALAXY FAR FAR AWAY?

SUPERB: FRBs in real time!

SUrvey for Pulsars and Extragalactic Radio Bursts

The FRB search is done in RAM "live" thus leading to real time discoveries

SUPERB FOLLOW-UP

FRB121102: THE REPEATER!

Follow-up pointings with Arecibo (1.4 GHz) and Green Bank (2.0 GHz) telescope toward the position of FRB121102 [Spitler et al. 2014]

> seen to repeat! [Spitler et al. 2016]

FRB121102: THE REPEATER!

Follow-up pointings with Arecibo (1.4 GHz) and Green Bank (2.0 GHz) telescope toward the position of FRB121102 [Spitler et al. 2014]

> seen to repeat! [Spitler et al. 2016]

THE REPEATING FRB121102 - LOCALISATION

LETTER

doi:10.1038/nature20797

A direct localization of a fast radio burst and its host

S. Chatterjee¹, C. J. Law², R. S. Wharton¹, S. Burke-Spolaor^{3,4,5}, J. W. T. Hessels^{6,7}, G. C. Bower⁸, J. M. Cordes¹, S. P. Tendulkar⁹, C. G. Bassa⁶, P. Demorest³, B. J. Butler³, A. Seymour¹⁰, P. Scholz¹¹, M. W. Abruzzo¹², S. Bogdanov¹³, V. M. Kaspi⁹, A. Keimpema¹⁴, T. J. W. Lazio¹⁵, B. Marcote¹⁴, M. A. McLaughlin^{4,5}, Z. Paragi¹⁴, S. M. Ransom¹⁶, M. Rupen¹¹, L. G. Spitler¹⁷ & H. J. van Langevelde^{14,18}

THE REPEATING FRB121102 - LOCALISATION

LETTER

doi:10.1038/nature20797

A direct localization of a fast radio burst and its host

S. Chatterjee¹, C. J. Law², R. S. Wharton¹, S. Burke–Spolaor^{3,4,5}, J. W. T. Hessels^{6,7}, G. C. Bower⁸, J. M. Cordes¹, S. P. Tendulkar⁹, C. G. Bassa⁶, P. Demorest³, B. J. Butler³, A. Seymour¹⁰, P. Scholz¹¹, M. W. Abruzzo¹², S. Bogdanov¹³, V. M. Kaspi⁹, A. Keimpema¹⁴, T. J. W. Lazio¹⁵, B. Marcote¹⁴, M. A. McLaughlin^{4,5}, Z. Paragi¹⁴, S. M. Ransom¹⁶, M. Rupen¹¹, L. G. Spitler¹⁷ & H. J. van Langevelde^{14,18}

dwarf starburst galaxy at z ~0.2

Extragalactic!

Extragalactic! One repeats: no catastrophic origin.

Extragalactic! One repeats: no catastrophic origin. More than one family?

Need more FRBs and more localisations.

NEW INSTRUMENTATION FOR FRBS

HIRAX

PAF - Apertif

MeerKAT, ASKAP, SKA

UTMOST 2-D

Realfast @VLA

NEW INSTRUMENTATION FOR FRBS

IME

Large FoV + localisation FRBs daily!

PAF - Apertif

MeerKAT, ASKAP, SKA

UTMOST 2-D

Realfast @VLA

... STAY TUNED ...

THANKS !

[Keane et al. 2016, Nature]

[Keane et al. 2016, Nature]

Shannon & Ravi 2016

Triggered ATCA

Shannon & Ravi 2016

De Launay et al. 2016

Shannon & Ravi 2016

2011: PERYTONS SET BACK THE FIELD

Abstract:

frequency sweep with a shape and magnitude resembling the Lorimer Burst. These new events were detected in a sidelobe of the Parkes Telescope and are of clearly terrestrial origin, with properties unlike any known sources of terrestrial broadband radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further

Burke-Spolaor et al. 2011. ApJ.

2011: PERYTONS SET BACK THE FIELD

Abstract:

frequency sweep with a shape and magnitude resembling the Lorimer Burst. These new events were detected in a sidelobe of the Parkes Telescope and are of clearly terrestrial origin, with properties unlike any known sources of terrestrial broadband radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further

Burke-Spolaor et al. 2011. ApJ.

2011: PERYTONS SET BACK THE FIELD

Abstract:

frequency sweep with a shape and magnitude resembling the Lorimer Burst. These new events were detected in a sidelobe of the Parkes Telescope and are of clearly terrestrial origin, with properties unlike any known sources of terrestrial broadband radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further

Burke-Spolaor et al. 2011. ApJ.

2015: PERYTONS' MYSTERY SOLVED!

2015: PERYTONS' MYSTERY SOLVED!

Petrof et al. 2015 (MNRAS)

2015: PERYTONS' MYSTERY SOLVED!

Petrof et al. 2015 (MNRAS)

2016: MORE FRBS FROM PARKES

Champion et al. 2016. MNRAS.