Detection of the Missing Baryons in a Warm-Hot Intergalactic Medium

(to appear in Nature)

F. Nicastro (OAR-INAF)

Y. Krongold, J. Kaastra, S. Borgani, E. Branchini, R. Cen, M. Dadina, C. Danforth, M. Elvis, F. Fiore, A. Gupta, S. Mathur, D. Mayya, F. Paerels, L. Piro, D. Rosa-Gonzales, J. Schaye, M. Shull, J. Torres-Zafra, N. Wijers, L. Zappacosta

Outline

- The Missing Baryon Problem
- Results from the XMM-Newton VLP on 1ES 1553+113
- From current to next generation X-ray spectrometers.

The Missing Baryons Problems

The Universe

The Galaxies

The Baryons in HD Simulations

(21.2 x 21.2 x 1.75)h⁻¹ Mpc Without (top) and with (bottom) GSWs Overdensity (left) Temperature (Right)

Cen & Ostriker, 2006

The Baryon Phases in HDS

Differential Mass Fraction vs T

The Warm-Hot (OVII) IGM XMM-Newton RGS Spectrum of 1ES 1553+113

Vulcano 2018 (F. Nicastro)

Broad-band RGS Spectra of 1ES 1553+113

8

26-32 Å RGS Spectra

Statistical Significance (after accounting for OVII blind redshift search and RGS eff.area-induced systematics): 3.9-4.5σ

Data / Model

Data / Model

Statistical Significance (after accounting for OVII blind redshift search and RGS eff.- area-induced systematics): $2.9-3.7\sigma$

Diagnostics

System	Т	No	$N_{\rm H}(Z/Z_{\odot})^{-1}$	Z
	(10 ⁶ K)	(10 ¹⁵ cm ⁻²)	(10 ¹⁹ cm ⁻²)	(Z _☉)
1	1.2 ± 0.4	$7.8^{+3.9}_{-2.4}$	$1.6^{+0.8}_{-0.5}$	≥0.1
2	0.95±0.45	$4.4^{+2.4}_{-2.0}$	$0.9^{+0.5}_{-0.4}$	≥0.1

z=0.2-0.6 Galaxy Distribution (in cylindrical volumes: $\pi(0.5 \text{ Mpc})^2 \times (\Delta z=0.07)$

Galaxies photo-z redshifts obtained via deep (r'>24) SDSS-band imaging with the OSIIS camera at GTC

Photo-z accuracy (and so bin width): $\Delta z=\pm 0.035$

Projected area: 0.5 Mpc radius circle (at each z) centered on our line of sight to 1ES 1553+113

Black Curve: Expected average number of galaxies with r'>24 within each cylindrical volume, based on Wilmer+06

System-1: Galaxy Environment at z=0.375-0.450 (5.7 kpc/arcsec)

8/13 spectroscopically confirmed galaxies within ±900 km s⁻¹

Nearest galaxy: i'=19.6 spiral at d=129 kpc and -15 km s⁻¹ → Galaxy's CGM?

> 500 kpc ~ 1.5 arcmin 1.5 Mpc _ 4.5 arcmin

Inner circle fits in Athena XIFU fov Getting 5 PSF FWHM away from the background target still samples the filament → emission+absorption (better at lower z)

System-2: Galaxy Environment at z=0.320-0.390 (5 kpc/arcsec)

Only 4/72 galaxies within the 1.5 Mpc radius circle have spectroscopic redshifts

Only 1/4 is confirmed at the redshift of the absorber (a i'=20.5 elliptical), but lies at d=633 kpc and +370 km s⁻¹ → Diffuse filament?

> 500 kpc ~ 1.7 arcmin 1.5 Mpc _ 5 arcmin

Entire inner circle still fits in Athena XIFU fov → emission+absorption

First data agree with predictions

Hot baryons close the census

 HI lines are vital to evaluate metallicity and so derive mass: Athena's MOP targets should all be observed with the HST-COS at SNRE≥50 (requires ~500 HST orbits)

 Removing "directly" the degeneracy between b_{th} and b_{turb}, can only be done comparing HI and metal resolved lines. To do this by using O and Fe in the X-rays, would require a resolution of 4 km s⁻¹ (R>75000)!!! Simply not doable.

Nature acceptance letter received soon after Manolas' 3rd goal!

What do we learn from this

- The first data confirm predictions: (once) missing baryons will be found in OVII intervening absorbers.
- MOPs for WHIM in absorption/emission are built up on realistic predictions: Athena/ Arcus will detect about 50-100 filaments against bright AGNs (R and Aeff compete)
- HI lines are vital to evaluate metallicity and so derive mass: Athena's MOP targets should all be observed with the HST-COS at SNRE≥50 (requires ~500 HST orbits)
- Removing "directly" the degeneracy between b_{th} and b_{turb}, can only be done comparing HI and metal resolved lines (and so, in the FUV). To do this by using O and Fe in the Xrays, would require a resolution of 4 km s⁻¹ (R>75000)!!! Simply not doable.
- However, detecting 2 or more unresolved lines from the same ion (especially He-like), and for more than one metal (i.e. O and Ne or Fe) with high S/N would allow us to infer the Doppler parameters and so (by comparing them) disentangle b_{th} and b_{turb}.
- Filaments detected with Arcus-like machines before Athena, against targets fainter than ~ 1mCrab, can be followed up with Athena XIFU to detect associated emission, 5-PSFs away from target. This, compared with absorption measurements, will give densities.
- Synergy between Athena and ELT in mapping the galaxy fields of absorbers will be vital to study metallicity vs galaxy-environment