

Lomonosov Moscow State University

Recent results from the TUS/LOMONOSOV Space Mission

Klimov P.A.

for the Lomonosov-UHECR/TLE collaboration JEM-EUSO program

VULCANO WORKSHOP 2018

May 20-26, Vulcano, Italy

FRONTIER OBJECTS IN ASTROPHYSICS AND PARTICLE PHYSICS

Outline

- The TUS detector
- The TUS data and types of events
- Search and analyses of UHECR EAS candidates
- Unusual events
- Conclusions and future plans

Scientific goals of the experiment

TUS detector on board the Lomonosov satellite

TUS detector trigger and modes of operation

Phenomena	Time sample	Integration time	Oscillogram length
EAS	$\tau = \tau_0 = 0.8 \ \mu s$	$t = 2^4 \tau = 12.8 \ \mu s$	ΔT = 256τ = 205 μs
Short TLE (elves)	τ = 2 ⁵ τ ₀ = 25.6 μs	$t = 2^{3}\tau = 0.2 ms$	ΔT = 256τ = 6.6 ms
Long TLE (sprites, jets)	$\tau = 2^9 \tau_0 = 0.4 \text{ ms}$	t = τ = 0.4 ms	ΔT = 256τ = 105 ms
Micro-meteor	$\tau = 2^{13} \tau_0 = 6.6 \text{ ms}$	$t = 2^4 \tau = 105 ms$	ΔT = 256τ = 1.7 s

Tests in MSU and NIIEM

PSF measurements in NIIEM, Istra

Preflight tests on the cosmodrome Vostochny

April, 28 2016

TUS began measurements on May 19, 2016

- EAS mode (0.8 μs) 1.5 year
 - UV background and fake trigger sources study
 - EAS search, ELVES, cities, lightning, unusual UV flashes
- TLE-1 mode (25.6 μs)– few days of operation – couple of hundreds us duration events
- TLE-2 mode (0.4 ms)– few weeks
 - many lightning, anthropogenic sources
- METEOR mode (6.6 μ s) 1.5 months
 - thunderstorm data and dozen of meteors

Short pulses, less than 1 μs (Charge particles tracks)

Geant4 simulation of signal from protons passing UV filter in front of PMTs

15 % of trigger were caused by this type of events

The anti-trigger was developed (search for instant change of ADC code and trigger blocking for 100 µs) to eliminate them and increase the exposure time.

Thunderstorm signal in EAS mode

- ✓ "Slow" rising of signal
- ✓ Correlation with thunderstorm regions
- ✓ Large are of luminosity, stray light outside FOV.

Powerful lightning UV flash in the FOV of the detector

From database of lightning detection network Vaisala GLD360: 2017-04-25 23:28:09.417 **11.2112 -4.6118** +16.9

EAS search. Simulations.

For the TUS detector simulation we use the ESAF – JEM-EUSO simulation code with recently implemented TUS design.

C. Berat, S. Bottai, D. De Marco et al., *Full simulation of space-based extensive air showers* ₁₇ *detectors with ESAF, Astroparticle Physics* **33** (May, 2010) 221–247

Search for extreme energy cosmic ray candidates in the TUS orbital experiment data

The total exposure of TUS in EAS mode is $\sim 10^3$ km² yr sr. ($\sim 4\%$ of night side operation time during moonless period taking into account dead time).

It gives expected number of events: ~0,5 ev/year (PAO spectrum) or ~2 ev/year (TA spectrum)

Multi level selection algorithm

•First level – online TUS trigger.

•Second level (analogous to TUS trigger but with additional conditions): the ADC threshold, adjacency length, signal location and duration within waveform)

• Third level – event by event study, reconstruction, atmospheric conditions analyses etc.

Event 03.10.2016 05:48:59UTC

Strong EAS candidate with expected spatial and temporal signal structure (waveforms and pixel map).

Pixel map and signal movement

Linear Track Algorithm (LTA) $x(t) = x_0 + u_x(t - t_0), \quad y(t) = y_0 + u_y(t - t_0)$ $\phi = \arctan(u_x/u_y), \quad \theta = 2\arctan(fRu/c)$

Kinematic analyses The TUS event Simulations

The absolute calibration and energy problem: ground based PMTs adjustment doesn't work because of HV algorithm error during first days of flight.

✓ The event is too bright to be a ~100-300 EeV EAS

EAS candidate measurements conditions

Google Earth map with the TUS field of view and the event

EAS candidate measurements conditions

Data of MERRA-2 Provided by R. Cremonini and M. Bertaina

The Vaisala GLD360 ground based lightning location network did not register any lightning strikes in a region with radius of 930 km and during 10 s period around the time of the TUS event.

PreConclusions

- The TUS detector measured the event that looks like EAS, but too bright to be considered as EAS with energy around 100-300 eV.
- Two major problems:
 - Variable and complicated background (with many natural and anthropogenic sources) → TUS gives an important information about this factor of measurements
 - Low sensitivity and FOV of the detector to measure a number of reliable EAS events → new projects are started to be developed: K-EUSO

Transient luminous events l

TUS event 18.09.2016, 9.66S, 17.14W

Transient luminous events II

Multiple ELVE

Marshall, R. A., C. L. da Silva, and V. P. Pasko (2015), Elve doublets and compact intracloud discharges, Geophys. Res. Lett., 42

after the initial flash.

170426_151956_3rd Module

KLYPVE-EUSO – is the next step in orbital UHECR measurements

The large FOV (40°) and large aperture (~5 m²)
Schmidt camera to be installed on boards the
Russian segment of the ISS in ~2022

The motivation for Schmidt optics of K-EUSO

KLYPVE-EUSO. Conceptual design.

40° FOV 10⁵ pixels 1 km spatial resolution 2.5 us temporal resolution 50 EeV energy threshold ~20000 km²sr yr/yr exposure

Conclusions

- The TUS detector is the first space mission aimed for UHECR EAS measurements. TUS gave important information on the UV background for EAS measurements.
- The TUS detector measured the event that looks like EAS (dynamics and spatial and temporal structure of the signal), but too bright to be considered as EAS with energy ~100-300 eV.
- A variety of atmospheric phenomena are measured by TUS: well known and not explained yet.
- The next mission for UHECR measurements from space is being developed based on the TUS and JEM-EUSO collaboration experience: KLYPVE-EUSO.

Thank you for your attention!

The TUS event position on the sky map.

- ✓ Red dot TUS event
- ✓ AGN van Velzen et al. catalog, less then 20 Mpc (pink), 20-50 Mpc (green), 50-200 Mpc (blue).

Meteor measurements examples ($\tau = 6.6$ ms)

Thunderstorm in Meteor mode (τ=6.6 ms)

Unusual flashes in Meteor mode

No lightning in radius of 300 km (Vaisala GLD360 data)!

METEOR-20170110_034630_tick: 000

Examples of first two types of events

Module

2016-06-28 02:13:53Z (#046). TLE. Max=32736067. Frame 063

TUS event

Lat	Long	Date	time
-1.094	-45.328	160628	02:13:53

Vaisala GLD360 lightning measurements 2016-06-28 02:13:53.722119433 -1.3826 -45.4971 -44.8 2016-06-28 02:13:53.756252748 -1.3955 -45.5006 +13.8 2016-06-28 02:13:53.845688510 -1.4166 -45.4738 -25.3 2016-06-28 02:13:53.876783978 -1.3885 -45.4569 -22.7 2016-06-28 02:13:53.918475497 -1.3878 -45.4628 -27.6

Anthropogenic light

• TLE mode (τ= 0.4 ms)

Anthropogenic light

- Meteor mode
- (τ=6,6 ms)

monosov

eas-20170108_201218_frame: 000

Multi level selection algorithm

- First level online TUS trigger.
- Second level (analogous to TUS trigger but with additional conditions:
 - moving sum of a waveform in the event exceeded the background level by at least 96 ADC counts (i.e., dQ = 96),
 - the adjacency length L>6
 - additional constraints based on the Gaussian approximation
 - the peak of the signal was located within 72...230 μs from the beginning of the record;
 - total duration of the signal in any active channel was within 27...144 $\mu s;$
 - the coefficient of multiple determination $R^2 > 0.8$.
- Third level event by event study, reconstruction, atmospheric conditions analyses etc. 41