

The muon g-2 experiment at Fermilab

VULCANO Workshop 2018

Marco Incagli - INFN Pisa

 $\vec{\mu}_{P} = \left(-g_{P}\right) \frac{e}{2m_{P}} \vec{S}$

 $a_p = \frac{g_p - 2}{2}$

"g-2" : a precision test of Standard Model

a_p : anomalous magnetic moment

$$a_{\mu} = (11\ 659\ 181.7 \pm 4.2) \times 10^{-10} \bullet a_{P} = 0$$
 at tree level (purely Dirac particle)

- The measurement of "g-2" or, more correctly, of the anomalous magnetic moment a_µ, allows
 - for a precise test of the Standard Model
 - to look for New Physics

Today's probe

The Muon's Anomalous Magnetic Moment

Contributions to a_{μ}

1948 , first big success of QED : $a^{exp} = 0.00118 \pm 0.00003$ Kush & Foley $a^{the} = \alpha/2\pi = 0.00116$ Schwinger

Contributions to *a*_{*u*}

Presently: QED thru tenth-order terms (12,672 diagrams)

Revised and Improved Value of the QED Tenth-Order Electron

Anomalous Magnetic Moment

Tatsumi Aoyama,^{1,2} Toichiro Kinoshita,^{3,4} and Makiko Nio²

(Dated: December 19, 2017)

Contributions to a_{μ}

Well known now, but not an easy calculation

Weak 1st Order	
Weak 2nd Order	

194.820 -41.760 x 10⁻¹¹

Contributions to *a*_{*u*}

measurement to 1st-order Hadron Vacuum Polarization

Contributions to a_{μ}

HLbL = Hadronic Light by Light = Hadronic higher order

	Value (× 10^{-10}) units
QED $(\gamma + \ell)$	$11658471.8951 \pm 0.0009 \pm 0.0019 \pm 0.0007 \pm 0.0077_{\alpha}$
HVP(lo) Davier 17	692.6 ± 3.33
HLbL Glasgow	10.5 ± 2.6
EW	15.4 ± 0.1
Total SM Davier17	11659181.7 ± 4.2

BNL E821 δa_{μ} (Expt) = ± 6.3

The "g-2 Test" has continued to point to something interesting

E821 = BNL experiment

Sensitivity to new physics at the TeV scale!

Very generally New Physics contributions to a₁₁ take the form:

a₁₁ is a flavor and CP conserving, chirality flipping loop induced quantity.

e.g.: in SUSY it is sensitive to charginos and sleptons. LHC direct searches are sensitive to squarks and gluinos.

 $a_{\mu}^{SUSY} \approx 130 \times 10^{-11} \frac{m_{\mu}^2}{M^2} \tan \beta$ \triangleleft expectation value for

Ratio of the vacuum the two Higgs doublets* (5-50)

* JHEP11(2014)058

 Difference between <u>spin precession</u> and <u>cyclotron motion</u> for a muon (charged particle with spin) in a magnetic field*:

$$\omega_a = \omega_s - \omega_c = g \frac{e}{2m} B - \frac{e}{m} B = a_\mu \frac{e}{m} B$$

 \mathbf{s}^* and \mathbf{p} are assumed to be in a plane perpendicular to \mathbf{B}

- simple classical calculation;
- the relativistic approach provides the same result!

- To keep the muon beam focused, electrostatic quadrupoles are used
- The *E field* modifies the frequence as follows:

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

- To keep the muon beam focused, electrostatic quadrupoles are used
- The *E field* modifies the frequence as follows:

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$
Magic v~29.3

 By choosing a "Magic γ" of γ=29.3, corresponding to a muon momentum of 3.1 GeV, the electric field contribution cancels out (...at least at first order!)

- To keep the muon beam focused, electrostatic quadrupoles are used
- The *E field* modifies the frequence as follows:

 By choosing a "Magic γ" of γ=29.3, corresponding to a muon momentum of 3.1 GeV, the electric field contribution cancels out (...at least at first order!)

Side Note: g-2 is, in part, also an EDM experiment

• A muon Electric Dipole Moment (EDM) would give an additional contribution to the spin rotation:

$$\vec{\omega}_{net} = -\frac{q}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
$$\vec{\omega}_{net} = \vec{\omega}_a + \vec{\omega}_{EDM}$$

- An η term would result in a *out of plane* spin precession
- In the frame of **Standard Model**, where only 1 CP violating phase exists, η is strongly suppressed
- This is not the case for **supersimmetry**, where *many CP violating phases exist*

- To measure the *Spin precession with respect to the particle momentum* (ω_a), two ingredients are needed:
 - a polarized muon beam
 - a way to measure muon Spin as a function of time (= a polarizer)

Polarization

• Use V-A structure of weak decays to build a polarized beam...

• ... and to measure muon polarization

Measuring the spin precession

• The number of observed positrons from muon decay oscillates with the ω_a frequency due to spin precession

- exponential decay modulated by spin precession
- note that the x-axis
 "wraps up" every 100
 µsec for a total of
 700msec,
 corresponding to 11
 muon lifetimes

Beam: BNL

Fermilab

24 GeV/c proton beam

The pion decay channel is **80 m** and the ring diameter is 14.1 m. Most m are thrown away to minimize pion content of the beam. $\pi/\mu \approx 1.1$, big source of background

8 GeV/c proton beam from Booster The pion decay channel is $\approx 2 \text{ km}$, No pions left E989

goal: 2 × 10¹¹

A formal way to write this looks like

• Expressing the magnetic field in terms of the *free proton* precession ω_p , a_u can be written as:

We will measure these two frequencies and report the Ratio R_{μ} In previous experiment $R_{\mu} = 0.003\ 707\ 206\ 4(2\ 0)$ [0.54 ppm]

Requirements for a better measurement

- 1. Store More Muons
 - ~20 x BNL in statistics ... (\rightarrow 100 ppb)
- 2. Prepare A More Uniform Magnetic Field
 - Goal: 3 x better and more carefully measured (\rightarrow 70 ppb)
- 3. Improve the Precession Frequency Measurement
 - All new instrumentation with high-fidelity recording of muon decays by many systems (→70 ppb)

To measure the Field, ω_p we start with the BNL magnet but improve its field uniformity

Field is measured using protons NMR

- A *Trolley* runs inside the beam pipe to map periodically the field by a set of pNMR probes : 1 run of ~3h is performed every 3d
- A set of 378 fixed probes are located in 72 locations in azimuth

New Tracker

Improved Calorimeters

New Laser control system

Category	E821	E989 Improvement Plans	Goal	
	[ppb]		[ppb]	<u>Key element</u> :
Gain changes	120	Better laser calibration		-
		low-energy threshold	20	Laser
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation	40	Calo + Laser
Lost muons	90	Better collimation in ring	20	Calo + Laser
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	Inflector + Kicker
E and pitch	50	Improved tracker		
		Precise storage ring simulations	30	Tracker
Total	180	Quadrature sum	70	

• The goal of the Fermilab experiment is to reduce the

systematic error on ω_a **180\rightarrow70 ppb**

Systematics on ω_a

Istituto Nazionale di Fisica Nucleari

systematic error on ω_a **180** \rightarrow **70** ppb

Systematics on ω_a

- Improved Calorimeters
- New Laser control system

New Tracker

Category	E821	E989 Improvement Plans	Goal	
00 (00 (00)	[ppb]		[ppb]	<u>Key element</u> :
Gain changes	120	Better laser calibration		Largest
		low-energy threshold	20	Laser improvement
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation	40	Calo + Laser
Lost muons	90	Better collimation in ring	20	Calo + Laser
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	Inflector + Kicker
E and pitch	50	Improved tracker		
		Precise storage ring simulations	30	Tracker
Total	180	Quadrature sum	70	

• The goal of the Fermilab experiment is to reduce the

The new calorimeter

Segmented array of PbF₂ crystals to reduce pileup (was one full block in BNL exp. E821)

The Laser energy-time calibration system

- State-of-the-art Laserbased calibration system
- 6 laser each one calibrating 4 calorimeters
- GAIN stability established to ~few x 10⁻⁴
- SYNC pulse before beam injection provides time synchronization
- To keep laser stability at 10⁻⁴ level → fraction of laser light sent to redundant monitoring system

Example: measuring pile up effect

• To measure CALO response to consecutive hits (pile up) two laser pulses are sent into the same calorimeters

- The calorimeter response is not 1 for two close hits (<40nsec)
- Systematic effect: pile up is more probable in the first part of the fill (muon life time ~64 $\mu sec)$
- With the Laser, all 1296 channels can be routinely measured

In-vacuum Straw Tracker determines Muon Distribution → limits on EDM via out of plane precession

Data taking just started ...

NOTE: this is a rough proxy of BNL statistics

Summer 2018 \rightarrow path to higher flux

- Several improvements foreseen for this summer, each contributing to increase the stored muons by 10-30%
- Accelerator upgrades
 - faster switching between MuonCampus-BeamTest
 - New target
 - Add wedges for beam momentum compaction
- Ring upgrades
 - Kicker : key upgrade for improving quality of stored beam
 - Quads : fix instabilities which cause Quads to run at HV lower than BNL (20kV vs 25kV)
 - Inflector : install new inflector

First look at data

- Number of positrons as a function of time : oscillation due to spin precession
- 5 parameters fit; good but

... but systematic effects are behind the corner 🛵

- Oscillation due to phase space rotation of the μ beam
- Well known effect \rightarrow to be corrected
- Many other such effects exist !

 \rightarrow at least 1 year to have systematics under control at ~0.2 ppm

Summary

- g-2 is taking data: 1xBNL statistics already collected !
- goal:
 - publish next year a result with an error compatible with previous experiment \rightarrow first check of central value
 - reduce by a factor of 2 in 2020
 - reduce by a factor of 4 in 2021
- If central value holds ... it starts to become interesting

BACKUP SLIDES

Scientific collaboration

-		- Al-		_	
-					
-		-			
_			-	_	
_				_	
	_				
_				_	
-				_	

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- Northern Illinois
- Regis
- UT Austin
- Virginia
- Washington
- National Labs
 - Argonne
 - Brookhaven
 - Fermilab

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma 2
- Trieste
- Udine

– Shanghai

Germany

– Dresden

Russia

- JINR/Dubna
- Novosibirsk

- Lancaster
- Liverpool
- University College London

- CAPP/IBS
- KAIST

24/05/18

What could it mean if Expt \neq Theory at > 5 σ ? Generically, "loop effects" couple to the muon mass and moment in

Following Czarnecki, Marciano, and Stockinger

$a_{\mu}^{\ \ \text{HLO}}$ calculation, traditional way: time-like data

$$a_{\mu}^{HLO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to hadr}(s) K(s) ds$$

$$K(s) = \int_{0}^{1} dx \frac{x^{2}(1-x)}{x^{2} + (1-x)(s/m^{2})} \sim \frac{1}{s}$$

$$R = \frac{\sigma_{had}}{\sigma_{\mu\mu}^{0}}$$

- σ(s) measured in the s-channel
- collection of many experimental results
- large fluctuations with large resonances and steps
- published error ~0.6% (update presented in TAU16)

a_μ^{HLO} = (692.3±4.2)10⁻¹⁰ (DHMZ)

E (GeV)

a_{μ}^{HAD} from $\mu + e \rightarrow \mu + e$ scattering

- NEW IDEA: measure $\mathbf{a}_{\mu}^{\text{HAD}}$ using $\mu e \rightarrow \mu e$ in the t-channel instead of $ee \rightarrow \pi \pi$!
- **INTEREST** of the measurement:
 - a single experiment can cover almost all the phase space
 - systematics completely different with respect to s-channel data
 - theoretical interpretation is not easy (NNLO terms are needed) but more straightforward than for s-channel

$$\frac{d\sigma}{dt} = \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2$$

$$\alpha(t) = \frac{\alpha(0)}{1 - \Delta \alpha_{LEP}(t) - \Delta \alpha_{HAD}(t)}$$

Intituto Nazionale di Finica Nucleo

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had}(x) dx$$

$$t = \frac{x \ m_{\mu}}{x - 1} < 0; \quad (0 \le x < 1);$$
$$\uparrow_{t=0} \qquad \uparrow_{t=-\infty}$$

The cross sections scan a wide range in energy

Latest **comprehensive compilation of all th**e world's data, obtaining:

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 268.5 \pm 72.4$$
 [3.7 σ]

The attractive idea: SUSY

Difficulty to measure at the LHC

$$a_{\mu}^{SUSY} \approx 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{M_{SUSY}} \right)^2 \tan\beta \operatorname{sign}(\mu)$$

