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η=systematic        δ=fuzziness

Not a single model 

Many families of models 
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• Tests with Fermi:                  
single photons                         
rare events (1, or a few): 
GRB090510 z=0.9

• Eobs=29.9GeV,  Eem=56.9GeV

• Δt/ΔE≤1s/30GeV, EQG≥EPlanck, 
α=1

Fermi LAT GRBs 

Abdo+2009
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• Robust test:                                     
use full GRB information (CCF) 
thousands photons                             

• Δt/ΔE~30ms/GeV~3μs/100keV  
EQG~EPlanck, α=1, z~1

• ~1ph/10μs, GRB with submm 
variability, detectors with um 
capability

• Δt/ΔE must scale with D(z) for a given 
EQG  

• Tens/hundreds GRBs: ~10ph/cm2/s 
—> Collecting area ~1m2



Mission concept
Disruptive technologies: cheap, underperforming, but producing 
high impact. Distributed instrument, tens/hundreds of simple units



Mission concept

HERMES constellation of cubesat 

2016: ASI funds for detector R&D 
2018: MIUR funds for pathfinder 
(Progetti premiali  2015) 

2017 progetti premiali 2016 proposal 
2018 H2020 Space proposal

Disruptive technologies: cheap, underperforming, but producing 
high impact. Distributed instrument, tens/hundreds of simple units
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How to promptly localise a GRB 
prompt event? (in particular 
those associated to a GW 
events)

How to construct a GRB engine?

Which is the ultimate granular 
structure of space-time?                
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1. Measure GRB positions through 

delays between photons arrival times: 
σPos = σCCF x c / <B> / (Nx(N −1− 2)1/2

cΔ
tBaseline

GRB front
+

=
σCCF~10μs 
σPos~10arcsec 
if <B>~7000km, N~100
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2. Add the signal from different units 
Total collecting area 50-100cm2 x 
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Transient fine (μs-ms) temporal 
structure 

Δt/ΔE~3μs/100keV  EQG~EPlanck, α=1, z~1
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Spacecraft
3U minimum, simplest basic configuration  
≤100cm2 detector

6U more performing configuration 
≤200cm2 detector, more accurate GPS, more 
accurate AOCS

…

solar 
panels

payload: detector, 
electronics

AOCS, 
reaction wheel

power management 
batteries

Lavagna+2017



Payload

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

• 5-300 keV (3-1000 keV)

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

• 5-300 keV (3-1000 keV)
• ~60 cm2 coll. area

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

• 5-300 keV (3-1000 keV)
• ~60 cm2 coll. area
• a few st FOV

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

• 5-300 keV (3-1000 keV)
• ~60 cm2 coll. area
• a few st FOV
• Temporal res. 10-100 

nsec

Labanti+2017



Payload
• Scintillator cristal (CsI, 

GAGG, BGO, etc.)         
Photo detector, SDD

• 5-300 keV (3-1000 keV)
• ~60 cm2 coll. area
• a few st FOV
• Temporal res. 10-100 

nsec
• ~1.8kg Labanti+2017
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Why HERMES now

Modularity: 
• Avoid single point failures, improve hardware 
• Pathfinder 

Open μsec - msec window:
• Accurate positions 
• QG tests

Limited cost and quick development
• COTS + in-house components  
• Trend in cost reduction of manufacturing and launching QS

Breakthrough scientific case: 
• EM of GWE



Programmatics
Progetto Premiale 2015 

• KO May 2018 

• PDR T0+9 

• CDR+QR T0+15 QM—> PFM1 

• AR T0+24 —> PFM2+PFM3 

• Launch mid 2020 (VegaC maiden flight or Vega)



QST with Quasars
In general models have both systematic and non-systematic 
effects. Some models do not have systematic in-vacuo 
dispersion but still have “fuzziness” (non-systematic effects).  

Time cannot be measured with uncertainty 
<tPlanck~5.4×10-44 s     —> Fuzzy distances 

From fuzzy distances to phase shifts: QST scenarios predict 
a degradation of the diffraction images of distant sources 
(GAC+ 1999,2001,2003, Ragazzoni+ 2003, Ng+2003, Steinbring 2007, Tamburini+ 2011) 

The first naïve approach prompted tests using HST 
observations of distant QSOs: Phase shift of light 
propagated over long distance



QST with QSOs
Use of diffraction as interferometry effect by a telescope dish of 
diameter D.  An error on the phase of a wave-front translate in 
an error ΔL on the distance of the light source. This will 
translate in an apparent angular shift Δθ.              Ragazzoni+2003 

Phase shifts cause a  drop 
of the Strehl ratio: image 
peak/diffration spike of 
unaberrated telescope
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Δφ(0.75,2.4,0.83)=1.5⋅10−7rad (HST I band)

Δφ(2.2,8.2,0.6)=1.9⋅10−7rad (LBT K)     present observations               
Δφ(1.2,8.2,0.5)=1.2⋅10−7rad (LBT J)     feasible right now

Δφ(0.75,8.2,0.4)=8⋅10−8 rad  LBT SHARK and 
forerunner, I band, 2014-2020
Δφ(0.75,23,0.4)=3⋅10−8 rad LIVE, LBT Interferometer 
visible extension,  I band, >2020)

Δφ(1.2,40,0.7)=3⋅10−8 rad E-ELT Y/J, Mikado, ~2025)
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• The best adaptive optic system so 
far on 8m class telescope! 

• Extremely good Strehl ratio at NIR 
wavelengths (>0.9) 

• Good Strehl ratio at optical 
wavelength (0.4-0.5) 

• Binocular telescope, 23m baseline. 

SHARK-Forerunner, I band 
PSF~17mas 
Pedichini+2017
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Thanks!


