VULCANO Workshop 2018

and the state

Frontier Objects in Astrophysics and Particle Physics

20th- 26th, May 2018 Vulcano Island, Sicily, Italy

Organized by Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Astrofisica (INAF)

Muon Collider a personal view

Nadia Pastrone

Vulcano – May 25, 2018

Whay we can learn impossible to guess....main element surprise....some things look for but see others.....Experiems on pions....sharpening

> Enrico Fermi - American Physical Society, NY, Jan. 29th 1954 "What can we learn with High Energy Accelerators?"

What's Next after LHC?

Physics scenario for a Future Collider

No single experiment can explore all directions at once.

- None can guarantee discoveries.
- The next big FC will exist only if capable to explore many directions, and be conclusive on some of those

Why Muons?

Mark Palmer

Intense and cold muon beams a unique physics reach $m_{\mu} = 105.7 \, MeV \, / \, c^2$ $\tau_{\mu} = 2.2 \, \mu s$ Tests of Lepton Flavor Violation Anomalous Magnetic Moment (g-2) **Physics** Precision sources of neutrinos **Frontiers** Next generation lepton collider • **Opportunities** s-channel production of scalar objects $\left(\frac{m_{\mu}^2}{m_e^2}\right) \approx 4 \times 10^4$ Strong coupling to particles like the Higgs • Reduced synchrotron radiation a multi-pass acceleration feasible Colliders Beams can be produced with small energy spread Beamstrahlung effects suppressed at IP • BUT accelerator complex/detector must be able to handle the impacts of μ decay • High intensity beams required for a long-baseline Neutrino Factory $\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$ are readily provided in conjunction with a Muon Collider Front End • Such overlaps offer unique staging strategies to guarantee physics Collider output while developing a muon accelerator complex capable of **Synergies** supporting collider operations

Vulcano 2018

A Muon Collider?

Great advantage in colliding leptons rather than protons

Lepton coll. operating at energy $\sqrt{s_{L}}$. Cross section for reaction at $E \sim \sqrt{s_{L}}$ (e.g., production of BSM at M=E)

$$\sigma_L(s_L) = \frac{1}{s_L} \left[\hat{s} \hat{\sigma} \right]_L$$

Hadron coll. operating at energy $\sqrt{s_{H}}$. Cross section for reaction at E. **Parton Luminosity suppression**

$$\sigma_H(E, s_H) = \frac{1}{s_H} \int_{E^2/s_H}^1 \frac{d\tau}{\tau} \frac{dL}{d\tau} \left[\hat{s}\hat{\sigma}\right]_H$$

Find equivalent $\sqrt{s_{H}}$ for Had. Coll. have same cross-section as Lep. Coll. for reactions at $E \sim \sqrt{s_{L}}$. Use that $[\hat{s}\hat{\sigma}]$ is nearly constant in τ .

QCD-coloured BSM can easily have much larger partonic XS. Comparison even more favourable for **QCD-neutral BSM**

• 14 TeV µ-collider nearly as good as the FCC at 100 TeV?

Physics reach

- Muon rare processes
- Neutrino physics
- Higgs factory
- Multi-TeV frontier

U.S. Muon Accelerator Program (MAP)

- Recommendation from 2008 Particle Physics Project Prioritization Panel (P5)
- Approved by DOE-HEP in 2011
- Ramp down recommended by P5 in 2014

AIM: to assess feasibility of technologies to develop muon accelerators for the Intensity and Energy Frontiers:

- Short-baseline neutrino facilities (nuSTORM)
- Long-baseline neutrino factory (nuMAX) with energy flexibility
- Higgs factory with good energy resolution to probe resonance structure
- TeV-scale muon collider

Vulcano 2018

Nadia Pastrone

6

http://map.fnal.gov/

Challenging optimization

- A μ⁺μ⁻ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μs (at rest)
- Best performances in terms of luminosity and power consumption

CRUCIAL PARAMETERS:

- luminosity
- energy
- energy spread
- wall power
- cost
- background
- radiological hazard
- technical risks

Vulcano 2018

Lepton Colliders: µvs e @ vs=125 GeV

Back on the envelope calculation:

High energy Muon Collider

High Energy Collisions

• At √s > 1 TeV:

Fusion processes dominate

- An Electroweak Boson Collider
- A discovery machine complementary to very high energy pp collider
- At >5TeV: Higgs self-coupling resolution <10%

Multi TeV scale - efficiency

Vulcano 2018

Muon Accelerator Program (MAP) Muon based facilities and synergies

Vulcano 2018

Mark

Palmer

MAP Proposal R&Ds

Interface

M. Palmer

٠

Muon Collider Parameters

		Muon Collider Parameters						
Termina Str			<u>Higgs</u>	Multi-TeV				
						Accounts for		
				Production			Site Radiation	
	Parame	eter	Units	Operation			Mitigation	
	CoM En	ergy	TeV	0.126	1.5	3.0	6.0	
	Avg. Lumi	nosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12	
	Beam Energ	y Spread	%	0.004	0.1	0.1	0.1	
	Higgs Production/10 ⁷ sec Circumference No. of IPs Repetition Rate β* No. muons/bunch			13,500	37,500	200,000	820,000	
			km	0.3	2.5	4.5	6	
				1	2	2	2	
			Hz	15	15	12	6	
			cm 🖉	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25	
			10 ¹²	4	2	2	2	
	Norm. Trans. Er	mittance, ε_{TN}	π mm-rad	0.2	0.025	0.025	0.025	
	Norm. Long. Emittance, ϵ_{LN} Bunch Length, σ_s		π mm-rad	1.5	70	70	70	
			cm	6.3	1	0.5	0.2	
	Proton Driver Power		MW	4	4	4	1.6	
	Wall Plug	MW	200	216	230	270		
Exquisite Energy Resolution				Suc ⇔ seve	cess of adva eral ⊭ 10 ³² [anced coolir Rubbia prop	ng concepts bosal: 5⊵10 ³²]	
of Higgs Width							Frermiia	

Vulcano 2018

Ionization cooling – MICE experiment

MICE experiment @ RAL

MICE: first results

IPAC2018 – FRXGBE3

Ionization cooling observed: using LiH and LH₂ absorbers

Single Particle Amplitude Result

MICE Data

- 6-140 P_{reference} of 140 MeV/*c* and ε_{input} of 6 mm
 10-140 P_{reference} of 140 MeV/*c*
- and ϵ_{input} of 6 mm
- R_{Amp}: ratio of downstream muon count to upstream
- $\mathbf{R}_{Amp} > 1 \rightarrow cooling:$
- ★ Migration of high amplitude muons to low amplitude
- "No absorber" does not show cooling, agrees with Liouville's theorem

Low EMittance Muon Accelerator

Snowmass 2013 - M. Antonelli e P. Raimondi

Direct μ **pair production**: muons produced from e⁺e⁻ $\rightarrow \mu^+\mu^-$ at Vs around the $\mu^+\mu^-$ threshold (Vs~0.212GeV) in asymmetric collisions (to collect μ^+ and μ^-)

Potential of this idea, but key challenges need to be demonstrated to prove its feasibility \rightarrow a new proposal for machine studies and measurements

Advantages: Low emittance possible Reduced losses from decay

Low background **Energy spread Rate:** $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Disadvantages:

LEMMA production scheme

arXiv:1803.06696v1

<u>Goal:</u>

@T $\approx 10^{11} \,\mu/s$ Efficiency $\approx 10^{-7}$ (with Be 3mm) \rightarrow $10^{18} \,e^+/s$ needed @T \rightarrow e⁺ stored beam with T

to minimize positron source rate Goal: mom. aperture +/-12% lifetime(e+) \approx 250 turns

from $\mu^+ \mu^-$ production to collider

- produced by the e⁺ beam on target T with $E(\mu) \approx 22 \text{ GeV}, \gamma(\mu) \approx 200 \rightarrow \tau_{lab}(\mu) \approx 500 \mu s$
- AR: 60 m isochronous and high mom. acceptance rings will recombine μ bunches for ~ 1 $\tau_{\mu}^{lab} \approx 2500$ turns
- fast acceleration
- muon collider

Vulcano 2018

Positron source

- Positron source of N(e⁺)/s ~10¹⁸ or N(e⁺)/bunch ~3×10¹¹ is about two order of magnitude higher of LHeC ERL and much more the existing positron sources
- Monte Carlo simulation indicates ~3% of primary positrons are lost due to interaction in the target (re-circulation)
- An hybrid (not conventional) scheme:
 - γ produced in the target (T) are sent to a generator to produce e⁺e⁻

Geant4 Simulation:

- $5X_0$ of Tungsten as generator
- Preliminary results seem promising, more to come

Vulcano 2018

Key topics for LEMMA scheme

1. Positron ring

- Iow emittance and high momentum acceptance
- 2. Muon Accumulator Rings IPAC2018 MOPMF087
 - High momentum acceptance
- 3. Positron source
 - High rate
- 4. $\mu^{+/-}$ production target
 - High Peak Energy Density Deposition PEDD
 - Power O(100 kW)

Synergy with High Power Targetry R&D, HL-LHC beam interceptors

Optics design & beam dynamics

Optics design & beam dynamics

Synergy with FCC-ee/ILC/CLIC future colliders

Detector and interaction region simulation

All the material comes from MAP people

- ILCRoot tracker and vertex detector hits response to MARS15 simulated backgrounds in the muon collider, TIPP 2011, Physics Procedia 37 (2012) 104 11
- Detector Backgrounds at Muon Colliders, TIPP 2011, Physics Procedia 37 (2012) 2015 2022
- *Neutrino Radiation at Muon Colliders and Storage Rings*, Published Proceedings of ICRS-9 International Conference on Radiation Shielding, Tsukuba, Ibaraki, Japan, October 17-22, 1999

Radiological Hazard simulations

TEP= tissue-equivalent phantom

Figure 8: Maximum dose equivalent in TEP embedded in soil in high-energy muon collider orbit plane with 1.2×10^{21} decays per year vs distance from ring center.

Figure 10: Maximum dose equivalent in TEP located in orbit plane vs distance from ring center in soil around a 2+2 TeV muon collider with 1.2×10^{21} decays per year for five values of vertical wave field.

Plan: re-do the study with LEMMA configuration and FLUKA Submitted a project for a grant at the University of Padova

Study of multi-TeV muon collider limitations due to collider background induced radiation

Options: ▪ Muon

source:

- 1. CERN PS
- 2. MAP Proton Source
- 3. LEMMA

Cooling :

- 1. MAP-like
- 2. LEMMA

Acceleration

- 1. Pulsed magnets
- 2. FFAG
- 3. RLA

COST:

- Acceleratio
- Source/Cooling
 - 🛟 Fermilab

14 TeV μ collider LHC- $\mu\mu$ with FCC-ee μ^{\pm} production

LHCC/FCC Muon Collider

100 TeV μ collider FCC- $\mu\mu$ with FCC-hh PSI μ^{\pm} production

scheme	$p-\gamma \mid GF. \mu \mid$		e^+	GF. e^+	
base	LHC/	/FCC-hh	FCC-ee	FCC	
rate \dot{N}_{μ} [GHz]	1	400	0.003	100	
μ /pulse [10 ⁴]	0.01	4	0.2	6,000	
p. spacing [ns]	100	100	15	15	
energy [GeV]	2.5	0.1	22	22	
rms en. spread	3%	10%	10%	10%	
n. emit. [µm]	7	2000	0.04	0.04	
$\dot{N}_{\mu}/arepsilon_N$	0.1	0.2	0.1	3,000	
$[10^{15} \text{ m}^{-1} \text{s}^{-1}]$					

IPAC2018 - MOPMF065

Frank Zimmermann (CERN)

Muon source comparison

	Physical process	Rate µ/s	normalized emittance ϵ_N [μ m-rad]		
e+ on target	e+e-→ μ+μ-	0.9x10 ¹¹	0.04		
Protons on target	p N $\rightarrow \pi X$, kX $\rightarrow \mu$ X'	10 ¹³	25		
Compton γ on target	$γ$ N \rightarrow μ+μ- N	5x10 ¹⁰	2		

Vulcano 2018

The comparison – a challenge

SIZE ISN'T EVERYTHING

Cost estimate

NB: all \$\$ - "US Accounting" (divide by 2-2.4 at CERN)

Conclusions

- The Muon Collider is an appealing solution as the HEP future accelerator and a possibility as neutrino factory to be fully explored
- U.S. Muon Accelerator Program (MAP) provides a well documented set of studies and measurements on the proton-driven option
- First results on ionizing cooling from MICE experiment now available
- A novel scheme to produce very low emittance muon pairs using a positron beam needs to be further investigated to became reality
- Detailed studies and R&Ds, required to design a feasible solution for a Muon Collider, must be planned and pursued
- The Update to the European Strategy for Particle Physics by May 2020 is the perfect opportunity to strengthen the effort!

You are all invited to contribute!

July 2-3, 2018 - Università di Padova - Orto Botanico

https://indico.cern.ch/event/719240/overview

Aknowledgements

From MAP Collaboration among others: Mark Palmer, Vladimir Shiltsev

From LEMMA collaboration among others:

Mario Antonelli, Manuela Boscolo, Susanna Guiducci, Donatella Lucchesi, Pantaleo Raimondi, Alessandro Variola, Andrea Wulzer

From MICE collaboration:

Ken Long

CERN WG to prepare input document to update EU Particle Physics Strategy: Jean Pierre Delahaye, Marcella Diemoz, Ken Long, Bruno Mansoulie, N.P., Lenny Rivkin, Daniel Schulte, Andrea Wulzer

References

A lot of material from – JINST Special Issue MUON

http://iopscience.iop.org/journal/1748-0221/page/extraproc46

Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA	A hybrid six-dimensional muon cooling channel using gas filled rf cavities					
S.A. Bogacz 2018 J/NST13 P02002	D. Stratakis 2017 JINST 12 P09027					
+ View abstract Time view article	+ View abstract 📰 View article 🔁 PDF					
OPEN ACCESS The experimental program for high pressure das filled radio frequency cavities for much cooling channels	Overview of the Neutrinos from Stored Muons Facility - nuSTORM D. Adey <i>et al</i> 2017 <i>JINST</i> 12 P07020					
The experimental program for high pressure gas linea radio nequency cavities for much cooling channels						
Heemire <i>et al</i> 2018 <i>Jivs1</i> 13 P01029 Horizon Transmission 13 P01029 PDF	+ View abstract 📰 View article 🔁 PDF					
Simulation of plasma loading of high-pressure RF cavities	A FODO racetrack ring for nuSTORM: design and optimization					
K. Yu <i>et al</i> 2018 <i>JINST</i> 13 P01008	A. Liu <i>et al</i> 2017 <i>JINST</i> 12 P07018					
+ View abstract Twew article PDF	🕂 View abstract 📰 View article 🔀 PDF					
Front End for a neutrino factory or muon collider	Final cooling for a high-energy high-luminosity lepton collider					
D. Neuffer et al 2017 JINST 12 T11007	D. Neuffer et al 2017 JINST 12 T07003					
+ View abstract Twew article PDF	+ View abstract 📰 View article 🔁 PDF					
Comments on ionization cooling channels	Design of a 6 TeV muon collider					
D. Neuffer 2017 <i>JINST</i> 12 T09004	M-H. Wang <i>et al</i> 2016 <i>JINST</i> 11 P09003					
+ View abstract Twew article PDF	+ View abstract 🗊 View article 🔁 PDF					

- IPAC2018
- M. Boscolo, M. Palmer and JP Delahaye,

'The future prospects of muon collider and neutrino factory', Rev Acc Sci Tech J. to be pub

extras

Direct Exploration of the Energy Frontier

Andrea Wulzer

An extremely rich program

Giulia Zanderighi, Higgs and Electroweak: theory overview

Vulcano 2018

Higgs scenario after HL-LHC

Deviation from SM predictions due to various New Physics models are expected to be ~ few %

> k_x is scale factor respect to the SM, i.e. $g_{HVV} = k_V g_{HVV}^{SM}$ (it assumes only one narrow Higgs resonance)

ATLAS has similar, more conservative values

In SM, expanded about the minimum $V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda vH^{3} + \frac{\lambda}{4}H^{4}$

Single H Double H Triple H

HH final state 3000fb ⁻¹	ATLAS Significance Coupling limit (95 % C.L.)	CMS Significance
НН → bbүү	$\frac{1.05 \sigma}{\text{-0.8 < } \lambda_{\text{HHH}} / \lambda_{\text{SM}} < 7.7}$	1.43 σ
HH →bbττ	0.6σ -4.0 < λ _{HHH} /λ _{SM} < 12.0	0.3 9 σ
HH →bbbb	$-3.5 < \lambda_{\rm HHH} / \lambda_{\rm SM} < 11.0$	0.39 σ
HH →bbVV		0.45 σ
ttHH, HH-> bbbb	0.35 σ	

S. Jézéquel, HL-LHC/HE-LHC Workshop 2017

Vulcano 2018

A comparison

Parameter	HL-LHC	FCC-ee	FCC-ee	ILC	CLIC	CLIC	CEPC	μ-Coll.	
√s[TeV]	14	350	240	250	350	1400	240	125	
Lum/IP[E34]	5	1.3	5.0	1.35	1.5	1.5	2	0.01	
Lum.Tot.[ab ⁻¹]	3	0.65x4	2.5x4	2	0.5	1.5	2.5x2	0.004	
Years[10 ⁷ s]	6	5	5	15	3	10	10	4	
Δm_H [MeV]	100			14	-	47	5.9	0.06	
$\Gamma_{H}[\%]$		1.2	2.4	3.9	2.0	1.1	2.8	4	
$\Delta k_{HZZ}[\%]$	4	0.15	0.16	0.38	0.6	0.5	0.25	-	
Δk_{HWW} [%]	4.5	0.19	0.85	1.8	1.2	0.5	1.2	0.2	Different
Δk_{Hbb} [%]	11	0.42	0.88	1.8	2.6	1.5	1.3	0.4	parameter
$\Delta k_{H\tau\tau}[\%]$	9	0.54	0.94	1.9	4.2	2.1	1.4	1.5	definition
$\Delta k_{H\gamma\gamma}$ [%]	4.1	1.5	1.7	1.1	-	5.9	4.7	-	
$\Delta k_{Hcc}[\%]$		0.71	1.0	2.4	6.3	3.2	1.7	-	
Δk_{Hgg} [%]	6.5	0.8	1.1	2.2	5.1	4.0	1.5	-	
Δk_{Htt} [%]	8.5	-	-	-	-	4.2	-	-	
$\Delta k_{H\mu\mu}$ [%]	7.2	6.2	6.4	5.6	-	14	8.6	-	
Δk_{HHH} [%]	limits	-	-	-	-	40	-	-	
References	ATL-PHYS-PUB- 2014-016	1308.6176	1308.6176	1710.07621	1608.07538	1608.07538	IHEP-CEPC- DR-2015-01	1308.2143	

Vulcano 2018

Muon Colliders potential of extending lepton high energy frontier with high performance

Vulcano 2018

Muon Colliders extending leptons high energy frontier with potential of considerable power savings

Vulcano 2018

Radiological hazard due to neutrinos from a muon collider

Vulcano 2018