LNF New Projects

Massimo.Ferrario@lnf.infn.it

VULCANO Workshop 2018 Frontier Objects in Astrophysics and Particle Physics 20th- 26th, May 2018 Vuicano Island, Sicily, Ita

LNF is the largest and the oldest (since 1954) of INFN infrastructures: Personnel ~330 staff (1/3 scientists) + PhD & postdocs + 500 users (30% foreign)

Its main mission: accelerators for High Energy Physics (and not only) + fundamental physics: Main competences in electron/positron machines

Capabilities in designing, building and operate relatively large complex: Accelerator Division (~110 people) Technical Division (~30), Research Division (~150)

Current main activities in accelerator technologies:

- Operation 24/24 of DAFNE collider (up to 2019)
- Construction of Linac of **ELI-NP** facility (20 MeV Compton γ source in Romania)
- R&D on plasma acceleration, o.2 PW laser, FEL, THz sources (SPARC_LAB)

Several other international collaborations:

- CERN, ESRF Grenoble, KEK (Japan)

Beam Test Facility also available (DAFNE Linac can be used parasitically)

Soft-X, UV, and infrared lines available around DAFNE ring (DAFNE_Light)

The Research Division is engaged in Experiments at DAFNE complex:

- KLOE2 (CPT and hadron physics, up to 30.3.18)
- Siddharta2 (physics of strangeness),
- PADME (search for dark matter)

and at international labs, in particle, nuclear and astro-physics CERN: LHC (ALICE, ATLAS, CMS, LHCb), NA62; FNAL, Jefferson Lab, China, etc ...

A large spectrum of technological R&D activities:

- Laboratory for space ranging characterization,
- New Materials Lab, X-rays, Neutron Lab,
- Cultural heritage, Radioprotection, etc...

+ 400 m² clean rooms + mechanical/electronics workshops + irradiation facilities

- + induidtion idenities
- + computing (LHCTier2 + KLOE data centre)

A long standing tradition in the construction of large detectors

Strong engagements in GEM and micro-pattern detectors and in crystal calorimetry

Research Activities at LNF

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

NFN

KLOE-2 data-taking closing ceremony March 30th 2018 at 11:00 in the Bruno Touschek Auditorium

"What Next at LNF site?"

is an often addressed question in many other labs See for ex. SLAC, DESY, CERN

Slow-down in Energy Increase of Frontier Accelerators

Livingston plot leveling off - here our version, giving beam energy versus time

Courtesy R. Assmann, DESY

"How to advance?"

Future of Accelerators

Worldwide effort towards high quality plasma beams

24 Ferdinand-Braun-Institut, Germany

SPARC_LAB is the test and training facility at LNF for Advanced Accelerator Developments (since 2005)

PWFA vacuum chamber at SPARC_LAB

Experimental characterization of active plasma lensing for electron beams

R. Pompili,^{1,a)} M. P. Anania,¹ M. Bellaveglia,¹ A. Biagioni,¹ S. Bini,¹ F. Bisesto,¹ E. Brentegani,¹ G. Castorina,^{1,2} E. Chiadroni,¹ A. Cianchi,³ M. Croia,¹ D. Di Giovenale,¹ M. Ferrario,¹ F. Filippi,¹ A. Giribono,⁴ V. Lollo,¹ A. Marocchino,¹ M. Marongiu,⁴ A. Mostacci,⁴ G. Di Pirro,¹ S. Romeo,¹ A. R. Rossi,⁵ J. Scifo,¹ V. Shpakov,¹ C. Vaccarezza,¹ F. Villa,¹ and A. Zigler⁶

Plasma-based acceleration techniques

resonant-PWFA

A train of three electron bunches (driver bunches) is sent through a capillary discharge
A resonant plasma wave is then excited in plasma

•A fourth electron beam (witness

beam) uses this wave to be accelerated

```
n<sub>e</sub> = 2x10<sup>16</sup> cm<sup>-3</sup>
λ<sub>p</sub> = 300μm
Capillary 1mm
Hydrogen
```

external injection LWFA

A laser beam excites plasma waves in a capillary filled with gas
A high brightness electron beam uses this wave to be accelerated

> $n_e = 1 \times 10^{17} \text{ cm}^{-3}$ $\lambda_p = 100 \mu \text{m}$ Capillary 100 μm Hydrogen

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Design Study started on Novemebr 2015 Approved as HORIZON 2020 INFRADEV, 4 years, 3 M€ Coordinator: Ralph Assmann (DESY)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

http://eupraxia-project.eu

Motivations

PRESENT EXPERIMENTS

Demonstrating **100 GV/m** routinely

Demonstrating **GeV** electron beams

Demonstrating basic **quality**

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based **linear** collider in 2040's

Plasma-based **FEL** in 2030's

Medical, industrial applications soon

ourtesy R. Assma

Consortium

16 Participants

A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

 $\lambda_{rad} \approx \frac{\lambda_u}{2v^2} \left(1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right)$

(Tunability - Harmonics)

Location of possible sites within EU

EuPRAXIA site studies:

- Design study is site independent
- Five possible sites have been discussed so far
- We invite the suggestions of additional sites

Central Laser Facility Didcot, United Kingdom

Eli Beamlines Prague, Czech Republic

EuPRAXIA@SPARC_LAB

http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-18-03-LNF.pdf

D. Alesini^a, M. P. Anania^a, M. Artioli^b, A. Bacci^c, S. Bartocci^d, R. Bedogni^a, M. Bellaveglia^a, A. Biagioni^a, F. Bisesto^a, F. Brandi^e, E. Brentegani^a, F. Broggi^c, B. Buonomo^a, P. Campana^a, G. Campogiani^a, C. Cannaos^d, S. Cantarella^a, F. Cardelli^a, M. Carpanese^f M. Castellano^a, G. Castorina^g, N. Catalan Lasheras^h, E. Chiadroni^a, A. Cianchiⁱ, R. Cimino^a, F. Ciocci^f, D. Cirrincione^j, G. A. P. Cirrone^k, R. Clementi^a, M. Coreno^l, R. Corsini^h, M. Croia^a, A. Curcio^a, G. Costa^a, C. Curatolo^c, G. Cuttone^k, S. Dabagov^a, G. Dattoli^f, G. D'Auria^l, I. Debrot^c, M. Diomede^{a,g}, A. Drago^a, D. Di Giovenale^a, S. Di Mitri¹, G. Di Pirro^a, A. Esposito^a, M. Faiferri^d, M. Ferrario^a, L. Ficcadenti^g, F. Filippi^a, O. Frasciello^a, A. Gallo^a, A. Ghigo^a, L. Giannessi^{f,l}, A. Giribono^a, L. A. Gizzi^e, A. Grudiev^h, S. Guiducci^a, P. Koester^e, S. Incremona^a, F. Iungo^a, L. Labate^e, A. Latina^h, S. Licciardi^f, V. Lollo^a, S. Lupi^g, R. Manca^d, A. Marcelli^{a,m,n}, M. Marini^d, A. Marocchino^a, M. Marongiu^g, V. Martinelli^a, C. Masciovecchio^l, C. Mastino^d, A. Michelotti^a, C. Milardi^a, M. Migliorati^g, V. Minicozziⁱ, F. Mira^g, S. Moranteⁱ, A. Mostacci^g, F. Nguyen^f, S. Pagnutti^f, L. Palumbo^g. L. Pellegrino^a, A. Petralia^f, V. Petrillo^o, L. Piersanti^a, S. Pioli^a, D. Polese^d, R. Pompili^a, F. Pusceddu^d, A. Ricci^m, R. Ricci^a, R. Rochow^l, S. Romeo^a, J. B. Rosenzweig^p, M. Rossetti Conti^o, A. R. Rossi^c, U. Rotundo^a, L. Sabbatini^a, E. Sabia^f, O. Sans Plannell^a, D. Schulte^h, J. Scifo^a, V. Scuderi^k, L. Serafini^c, B. Spataro^a, A. Stecchi^a, A. Stella^a, V. Shpakov^a, F. Stellatoⁱ, P. Tomassini^e, E. Turco^d, C. Vaccarezza^a, A. Vacchi^j, A. Vannozzi^a, G. Vantaggiato^e, A. Variola^a, S. Vescovi^a, F. Villa^a, W. Wuensch^h, A. Zigler^q, M. Zobov^a

^a INFN - Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, Italy

^b ENEA - Centro Ricerche Bologna, Via Martiri Monte Sole 4, 40129 Bologna, Italy

^c INFN - Milano section, Via Celoria 16, 20133 Milan, Italy

^d Universitá degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero, Palazzo del Pou Salit - Piazza Duomo 6, 07041 Alghero, Italy

^e Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy and INFN Pisa section, Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

^f ENEA - Centro Ricerche Frascati, Via E. Fermi 45, 00044 Frascati, Italy

^g Sapienza University of Roma and INFN, P.le Aldo Moro 2, 00185 Rome, Italy

^h CERN, CH-1211 Geneva 23, Switzerland

ⁱ Universitá degli Studi di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy

^j INFN - Trieste section, Via Valerio 2, 34127 Trieste, Italy

^k INFN - Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy

¹ Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy

^m RICMASS, Rome International Center for Materials Science Superstripes, 00185 Rome, Italy

ⁿ ISM-CNR, Basovizza Area Science Park, Elettra Lab, 34149 Trieste - Italy

^o Universitá degli Studi di Milano and INFN, Via Celoria 16, 20133 Milan, Italy

^p Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA

^q Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

SPARC_LAB HB photo- injector

X-band Linac and High Power Laser

Plasma WakeField Acceleration – External Injection

Capillary discharge at SPARC_LAB

KYMA Δ udulator at SPARC_LAB: λ =1.4 cm, K1

Photon beam line

Water Window Coherent Imaging

Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV)

Water is almost transparent to radiation in this range while nitrogen and carbon are absorbing (and scattering)

Coherent Imaging of biological samples living in their native state Possibility to study dynamics

Courtesy F. Stellato, UniToV

Laboratory Astrophysics with high charge beams your help is welcome

Ultra relativistic **Quasi Neutral beams**, positron bunch embedded into an electron bunch

- high-energy astrophysical phenomena
- ultra relativistic out- flows from active galactic nuclei and pulsars
- emission of gamma-ray bursts

Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam PRL 2017 J. Warwick et al.

Ultra relativistic charged beams into a quasi neutral low density plasma:

- bunch produced by supernova explosions
- generation of magnetic fields
- magnetic field dynamo processes

Magnetic field generation and diffusion by a laserproduced blast wave propagating in nonhomogenous plasma, A Marocchino et al 2015 New J. Phys. 17 043052

Energetic particles (cosmic rays) are accelerated in supernova remnants or relativistic jets

- mechanisms of magnetic field amplification
- Instabilities due to charged particle break of neutrality
- These processes are strictly related to the previous Supernova Remnant case study

Microphysics of Cosmic Ray Driven Plasma Instabilities, Space Science Reviews, October 2013, A. M. Bykov et al.

R&D perspectives

- X-band RF technology implementation, > CompactLight => CERN collaboration
- Science with short wavelength Free Electron Laser (FEL)
- Physics with high power lasers and secondary particle source
- Compact Neutron Source
- R&D on compact radiation sources for medical applications
- Detector development and test for X-ray FEL and HEP
- Science with THz radiation sources
- Nuclear photonics with γ-rays Compton sources
- R&D on polarized positron sources
- R&D in accelerator physics and industrial spin off

Project Timeline

Year	2018				2019				2020				2021				2022				2023				2024				2025			
Month	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
																																\square
EuPRAXIA																																\square
Design Study & ESFRI																																
Preparatory Phase																																\square
																																\square
XLS-CompactLight																																\square
Design Study																																
EuPRAXIA@SPARC_LAB																																
Machine Conceptual Design Report																														\square	\square	\square
Machine Technical Design Report								M1																								\square
																																\square
New building design																														\square	\square	\square
New building construction tender																														\square	\square	\square
New building construction																					M2									\square	\square	\square
																																\square
X-band R&D																																\square
X-band LINAC tender																														\square	\square	\square
X-band LINAC realization and test																														\square	\square	\square
X-band LINAC installation and commissioning																									M3							\square
																														\square	\square	\square
FLAME upgnde tender																																\square
FLAME components test																														\square		\square
FLAME installation and commissioning																									M4							\square
Plasma Accelerator R&D @SPARC_LAB																																
Planna Accelerator Tender																																
Plasma Accelerator Installation																									M5							
Plasma Accelerator Commissioning																												M8				
FEL undulator, optics and user tender																																
FEL undulator characterisation																																
FEL installation in the new building																									M6							\square
FEL commissioning																													M9			\square
User Beam Line R&D																																
User Beam Line Tender and Construction																																
User Beam Line Installation																									M7							
User Beam Line Commissioning																														M10		
Pilot User Operation																																M11

The future EUPRAXIA@SPARC_LAB Facility

- Procedure for purchasing neighboring land started.
- Announcement of tender for the building design (1.2 Meuro).

Waiting for the Green Light

Thank for your attention