

SOLAR NEUTRINOS

Electrons neutrinos are produced by the nuclear fusion in the star:

- pp chain ≈ 99 % of Sun energy
- CNO chain

pp chain

THE IMPORTANCE OF SOLAR NEUTRINOS

• IN THE PAST:

Deficit on observed flux

→ Discovery of flavor oscillation

The deficit depends on energy

→ MSW effect

NOW and FUTURE: the precision era

- for testing solar model
 (high or low metallicity model)
- for a deep comprehension of stars and neutrino physics

EXPERIMENTS:

- Radiochemical experiment,
- Cherenkov detector:

Kamiokande SuperKamiokande SNO

EXPERIMENTS:

(Kamland) SuperKamiokande **Borexino**

the only one in the sub-MeV region!

THE BOREXINO DETECTOR

Borexino history:

Construction: up to 2007

Phase I: 2007-2014

Phase II: 2014-2016

the data taking is continuing

THE BOREXINO DETECTOR

$$\nu + e^- \rightarrow \nu + e^-$$

Borexino detects **the electron recoil energy** seen by 2200 PMTS **in single p.e. regime**

From the signal of all PMTS:

 the energy is related to the sum of the charge of each pmt signal → 500 p.e /MeV

$$\frac{\sigma(E)}{E} = \frac{5\%}{\sqrt{E}}$$

 the position of the neutrino interaction is achieved by the different time of arrival of gamma to the PMT (laser calibration for timing)

$$\frac{\sigma(x)}{x} = \frac{10 \ cm}{\sqrt{E}}$$

Energy range: from 190 KeV to 10 MeV

Also **antineutrinos** from Earth can be observed by a coincidence measurement

BACKGROUND IN BX SPECTRUM

Expected neutrino events: 50 counts/day 100 ton signal is 5 10⁻⁹ Bq/kg water is 10 Bq/kg!!

BACKGROUND COMPONENTS:

- External background:
 - -cosmogenic ¹¹C and neutron
 - -gamma rays from ²⁰⁸Tl, ²¹⁴Bi from PMT
- Internal background:

```
<sup>14</sup>C in scintillator
<sup>85</sup>Kr in air
<sup>238</sup>U in rock → (<sup>210</sup>Bi and <sup>210</sup>Po)
<sup>232</sup>Th in rock
<sup>40</sup>K
<sup>49</sup>Ar
<sup>222</sup>Rn
```


BACKGROUND IN BX SPECTRUM

Thanks to a big work of purification during the construction and between Phase I and Phase II

BACKGROUND COMPONENTS:

External background:

-cosmogenic ¹¹C and neutron

-gamma rays from ²⁰⁸Tl, ²¹⁴Bi from PMT

Internal background:

 14 C in scintillator 14 C/ 12 C 10^{-18} g/g! 85 Kr in air reduced of a factor 4 in Phase II 238 U 9.4 10^{-20} g/g! 232 Th 5.7 10^{-19} g/g! few counts /day 49 Ar few counts /day

Background (LER)	rate (Bq/100 t)
¹⁴ C(0.156 MeV, β')	$[40.0 \pm 2.0]$
Background (LER)	rate (cpd/100 t)
⁸⁵ Kr (0.687 MeV, β ⁻)	6.8 ± 1.8
²¹⁰ Bi (1.16 MeV, β')	17.5 ± 1.9
¹¹ C (1.02-1.98 MeV, β*)	26.8 ± 0.2
²¹⁰ Po (5.3 MeV, α)	260.0 ± 3.0
Ext. ⁴⁰ K (1.460 MeV, γ)	1.0 ± 0.6
Ext. ²¹⁴ Bi (<1.764 MeV, γ)	1.9 ± 0.3
Ext. ²⁰⁸ Tl (2.614 MeV, γ)	3.3 ± 0.1

Borexino is the less radioactive detector on the Earth!!

THE BOREXINO SPECTRUM

Low energy

NEUTRINO: pp — Be - CNO

BACKGROUND: ¹⁴C, ²¹⁰Po, pile-up

Higher energy:

NEUTRINO: pep signal

BACKGROUND: 11C, 214Bi, 208Tl,

In addition: ²¹⁰Bi, pep, CNO signals are in the same energy range

THE BACKGROUND REJECTION

GENERAL TECHNIQUES:

 External and internal muon veto

(veto of 300 ms after a muon in OD)

 Fiducial volume cut for removing external background

R<2.8 m and -1.8<z<2.2 m

THE ¹¹C BACKGROUND REJECTION

THREE FOLD COINCIDENCE technique

¹¹C are always produced with neutrons thus their signals are correlated in space and time with a muon and a neutron

$$\mu + {}^{12}\text{C} \rightarrow \mu + {}^{11}\text{C} + n$$

 ${}^{11}\text{C} \rightarrow {}^{11}\text{B} + e^+ + \nu_e$

Lifetime 30 min

2 different data set for the final fit! (TFC subtracted and TFC tagged)

Tagging efficiency= 92±4%

PULSE SHAPE technique ${}^{11}\text{C} \rightarrow {}^{11}\text{B} + e^+ + \nu_e$

$${}^{11}\text{C} \rightarrow {}^{11}\text{B} + e^+ + \nu_e$$

The PDF of scintillation time profile is significantly different for e+ and e- events because:

- in 50% of the cases, e+ annihilation is delayed by ortho-positronium formation, $(\tau \sim 3 \text{ ns})$
- the energy deposit is **not point-like**

CALIBRATIONS

With different gamma and neutron sources in many points

- for energy resolution response
- for tuning position reconstruction algorithm

as a function of the position in the sphere

Isotope	Type	Energy(keV)
⁵⁷ Co	γ	122
¹³⁹ Ce	γ	165
²⁰³ Hg	γ	279
85Sr	γ	514
^{54}Mn	γ	834
^{65}Zn	γ	1115
⁶⁰ Co	γ	1173-1332
⁴⁰ K	γ	1460
²²² Rn	$\alpha \beta$	0÷ 3200
¹⁴ C	β	0÷ 156
²⁴¹ Am ⁹ Be	n	\sim 0 ÷ 10,000
Ext. ²²⁸ Th	γ	2615

 for tuning many parameters in the Monte Carlo simulation:

a full simulation of all physical process, from the neutrino interaction to the light production and propagation, up to the electronics and to data acquisition chain

THE FIT PROCEDURE

Data set: 14th Dec 2011- 21st May 2016

Exposure 1291.51 days x 71.3 tons

Energy range 0.19 MeV → 2.93 MeV

a multi-variate approach: A simultaneous fit of

- the **TFC**-subtracted and the TFC-tagged energy spectra,
- the **spatial** distribution, (for residual external bk)
- the distribution of the **pulse-shape** discrimination variable

2 complementary methods

MC fit:

only the rate of **solar neutrino** components and of the **background** components are free parameters

Analytical fit:

energy response function described analytically: 6 parameters of the response function are free in the fit

Since the degeneracy of CNO and pep, we fix CNO to HZ-SSM (with LMA oscillation)

THE MULTIVARIATE FIT

PHASE II RESULTS

	Borexino experimental results		
Solar ν	Rate	Flux	
	[cpd/100 t]	$[{\rm cm}^{-2}{\rm s}^{-1}]$	
pp	$134 \pm 10 {}^{+6}_{-10}$	$(6.1 \pm 0.5 ^{+0.3}_{-0.5}) \times 10^{10}$	
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 ^{+0.4}_{-0.7}$	$(4.99 \pm 0.11 ^{+0.06}_{-0.08}) \times 10^9$	
$pep~(\mathrm{HZ})$	$2.43 \pm 0.36 ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19 ^{+0.08}_{-0.12}) \times 10^8$	
$pep~(\mathrm{LZ})$	$2.65 \pm 0.36 {}^{+0.15}_{-0.24}$	$(1.39 \pm 0.19 ~^{+0.08}_{-0.13}) \times 10^{8}$	
CNO	$< 8.1 (95\% \mathrm{C.L.})$	$< 7.9 \times 10^8 (95\% \mathrm{C.L.})$	

arXiv: 1707.09279v2 (2017)

The robustness of the results was checked by performing the fit in several configurations (energy variable, binning)

The differences between the results were quoted as systematic errors

		pp		⁷ Be		pe	p
	Source of uncertainty	-%	+%	-%	+%	-%	+%
	Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
	Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
١	Pile-up modeling	-2.5	0.5	0	0	0	0
٠	Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
	Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
	Inclusion of ⁸⁵ Kr constraint	-2.2	2.2	0	0.4	-3.2	0
	Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
	Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
	Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
	Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6

5σ EVIDENCE OF PEP

Likelihood profile from the multivariate fit

Zooming in the pep energy region

We see the pep shoulder!

A NEW UPPER LIMIT ON CNO

Fixing the ratio between pp/pep: 47.7 ± 1.2

Bx: Φ < 8.1 cpd/100ton (95%) C.L

HZ: $4.91 \pm 0.56 \text{ cpd/} 100 \text{ ton}$

LZ: $3.62 \pm 0.37 \text{ cpd/}100 \text{ ton}$

Likelihood profile from the multivariate fit

THE 8B NEW RESULTS

Different type of analysis:

- events in the entire scintillator (only z<2.5 m cut)
- energy threshold 3.2 MeV to cut gammas from ²⁰⁸Tl from PMT

The neutrino signal is extracted from the radial distribution of the events

High energy range:

Neutrinos+neutrons captures

Low energy range:

Neutrinos+neutrons+ 3 components of ²⁰⁸Tl (inner, surface, diffused)

$$R_{LE} = 0.133^{+0.013}_{-0.013}(stat) {}^{+0.003}_{-0.003}(syst) \text{ cpd/}100 \text{ t},$$

$$R_{HE} = 0.087^{+0.08}_{-0.010}(stat) {}^{+0.005}_{-0.005}(syst) \text{ cpd/}100 \text{ t},$$

$$R_{LE+HE} = 0.220^{+0.015}_{-0.016}(stat) {}^{+0.006}_{-0.006}(syst) \text{ cpd/}100 \text{ t}.$$

arXiv:1709.00756 (2017)

THE GLOBAL ANALYSIS

Solar neutrino survival probability

- P_{ee}(pp)=0.57±0.10
- P_{ee}(⁷Be,862keV)=0.53±0.05
- $P_{ee}(pep)=0.43\pm0.11$ in the HZ-SSM hypothesis

Results consistent with the MSW-LMA solution!

Solar metallicity

$$R(HZ)=0.18 \pm 0.01$$

 $R(LZ)=0.16 \pm 0.01$

$$R \equiv \frac{<^{3} \text{He} + ^{4} \text{He} >}{<^{3} \text{He} + ^{3} \text{He} >} = \frac{2\phi(^{7}\text{Be})}{\phi(\text{pp}) - \phi(^{7}\text{Be})} = 0.18 \pm 0.02$$

An hint to the high metallicity

CONCLUSIONS

- Borexino detector:
 - → ultra low radioactive background
 - → well tuned MC
 - → refined analysis for background subtraction
- Phase II results:
 - \rightarrow More precise measurement of pep, ⁷Be, pp solar components
 - → More precise measurement of ⁸B flux
- Borexino future:
 - → CNO measurement (?)

The SEASONAL MODULATION

Only the events in the energy range:

215 keV-715 keV

After ²¹⁰Po subtraction by pulse-shape discrimination

$$R(t) = R_0 + \overline{R} \left[1 + \epsilon \cos \frac{2\pi}{T} (t - \phi) \right]^2$$

$$\varepsilon = 1.74 \pm 0.45 \%$$

T= 367±10 days
 $\Phi = -18 + 24 \text{ days}$

