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The PTOLEMY project: 

from an idea to a real experiment for 
detecting Cosmological Relic Neutrinos  
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Cosmological Relic Neutrinos 
What we know that Cosmological Neutrino Background (CNB)

density per flavor

mean kinetic energy

temperature

p distribution without 
late-time small scale  
clustering  
and µ/ Tν<0.1 

Date of birth

Wave function  
extension

Highest flow among known  
Components of the Universe 
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An unstable nucleus is an optimal target 

for very low energy neutrino detection 

e±

νe
(−)

(A, Z) (A, Z ± 1)

β decay

e±

νe
(−)

Neutrino Capture on a 
Beta decaying nucleus 

(NCB) (A, Z)
(A, Z ± 1)

This process has no energy threshold !

W. Weinberg, Phys. Rev. 128 1962  

A.G.Cocco, G.Mangano and M.Messina   JCAP 06(2007) 015



NCB signature
Neutrino masses ~ 0.5 eV are compatible with the present picture of our Universe.

The events induced by Neutrino Capture have a unique signature: there is a gap of 2mν between the 
NCB electron energy and the energy of beta decay electrons at the endpoint.
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Signal to background ratio

Observing the last energy 
bins of width Δ

It works for Δ<mv

dn/dTe β

mν Te

2mν

where the last term is the probability for a beta decay electron 
at the endpoint to be measured beyond the 2mν gap
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NCB Cross Section 
as a function of Eν, Qβ for different nuclear spin transitions 

allowed 1st unique forbidden 2nd unique forbidden 3rd unique forbidden

            

         
   

allowed 1st unique forbidden 2nd unique forbidden 3rd unique forbidden

β+   (bottom)

β−        (top) Qβ =     1 keV 
Qβ = 100 keV 
Qβ =   10 MeV

A.G.Cocco, G.Mangano and M.Messina   JCAP 06(2007) 015
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NCB Cross Section 
results achieved so far

• Exist a process (NCB) that allows in principle the detection of neutrinos of vanishing energy! 

• The cross section (rate) does not vanish when the neutrino energy becomes negligible! 

• NCB cross section can be evaluated by means of known quantities (t1/2) and the ratio of the nuclear 
shape factors.
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Relic Neutrino Capture Rates

• Target mass:  100 grams of tritium (2 x 1025 nuclei) 
• Cross section σ(v/c)=(7.84±0.03)x10-45cm2 (known at <0.5 %) 
• Estimate of Relic Neutrino Capture Rate: 
(56 νe/cm3) (2 x 1025 nuclei) (10-44 cm2) (3 x 1010 cm/s) (3 x107s)= 10 events/yr
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Ringwald and Wong (2004)

Gravitational clumping could potentially 
increase the local number of relic 
neutrinos. 
For low masses ~0.15eV, the local 
enhancement is ~<10%

Villaescusa-Navarro et al (2011)  
PF de Salas, S Gariazzo, J Lesgourges, S. Pastor  
JCAP 09(2017)034 

Cocco, Mangano, Messina: JCAP 0706 (2007) 015
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Ringwald and Wong (2004)

Gravitational clumping could potentially 
increase the local number of relic 
neutrinos. 
For low masses ~0.15eV, the local 
enhancement is ~<10%

Villaescusa-Navarro et al (2011)  
PF de Salas, S Gariazzo, J Lesgourges, S. Pastor  
JCAP 09(2017)034 

Cocco, Mangano, Messina: JCAP 0706 (2007) 015

A. J. Long, C Lunardini and E Sabancilar JCAP 08(2014)038 
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The 

PTOLEMY 

PonTecorvoObservatoryforLight,Early-Universe, Massive 
Neutrino Yield  

Experiment



PTOLEMY Experimental Layout
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Dilution 
Refrigerator 

Kelvinox 
MX400
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The PTOLEMY prototype
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Major Challenges
• Compress a 70m spectrometer length – KATRIN’s length – down to 

~cm scale and replicate it ~x104-106  and reduce e flow by 1014  

• Reduce molecular smearing 

– New source (Tritiated-Graphene) 
• Measure the energy spectrum directly with a resolution comparable 

to the neutrino mass 

– High-resolution electron microcalorimeter 

• New ExB filter concept 

• RF trigger system 

• Low 14C
!14



Molecular Broadening
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4.7eV
~3eV He3 recoil 

at endpoint

T-T ! (T-He3)*

Tritiated-Graphene 
- <3eV Binding Energy 
- Single-sided (loaded on substrate) 
- Planar (uniform bond length) 
- Semiconductor (Voltage Reference) 
- Polarized tritium(directionality?)
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Cold Plasma Loading
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H Plasma

Below 1eV

Ehemann et al. Nanoscale Research Letters 2012, 7:198

Y. Raitses et al.



Cold Plasma Loading at PPPL
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2009 Science DC plasma. H coverage 10%
2009 ACS Nano Capacitive coupled RF plasma. H coverage 17%
2010 APL RF hydrogen plasma. H coverage 9%
2011, Carbon Oxford Plasmalab 1000. H coverage less than 10%

2011 Advance Material. STM hydrogen dose, Hydrogen coverage max 25.6%

2014, Applied materials 
&interfaces

RIE system. H coverage 33%

2015, ACS nano HPHT. H coverage 10%

XPS (X-Ray Photoelectron 
Spectroscopy) Analysis: sp2 is 
from unhydrogenated C atoms. 
sp3 is hydrogenated C atoms. The 
area ratio of sp2 and sp3 is used 
to calculate H coverage.

40% H 
Coverage 

H coverage summary 
from the literature 

New Results!  ! BNL Center for Functional Nanomaterials 
                                        
! Cryogenic Hydrogen loading and STM Analysis

Best results – aim to achieve 
saturation at 100% while preserving 
quality of Graphene 



Resolution of ~0.55eV at 1keV and ~0.15eV at 0.1keV operating at 70-100mK 
under investigation (Clarence Chang ANL, Moseley et. al. GSFC/NASA) 

Magnetic fields of few tens of Gauss may be able to thread through normal regions   
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Calorimetric measurement  
based on Transition Edges Sensors technology

TES sensitive to magnetic field

E
C G

τ = C

SPIDER island TES example

100 eV electron can be stopped in a very  
small absorber absorber i.e. small C



Microcal for IR Photons

IR TES  achieve 0.12 eV resolution at 0.8 eV for 
single IR photons 

Results from INRIM (Torino) - 
Istituto Nazionale di Ricerca 
Metrologica

σE = 0.05eV
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Thread electron trajectories (magnetic field lines) through an array of Project-8 type antennas 
with wide bandwidth (few x10-5) to identify cyclotron RF signal in transit times of order 0.2 
msec. The timing resolution expected is ~10ns depending on micro-calorimeter response. 

RF tracking and time-of-flight

Norman Jarosik



PTOLEMY multi-g

• Different geometries were investigated
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Kassiopeia VTK display
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High Voltage System and Monitoring 

σ = 0.03 V 
at 5 kV
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LoI submitted to the LNGS Scientific Committee 
and to the INFN-Commissione II 

The LoI proposes to install and run the PTOLEMY prototype underground at LNGS to 
accomplish the proof of principle of the PTOLEMY experimental concept.

Waiting for approval
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World Map of the PTOLEMY collaboration 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World Map of the PTOLEMY collaboration 



Summary
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What 10 years ago appeared to be challenging is presently  

much closer to be feasable.   

 
Although a big amount of work is needed in order to properly design the 
detector 

Models and simulations have been partially setup 

Many more studies need to be done (e.g. E-gun, RF signal) 

Many more (smart) ideas are needed 

Collaborators are very welcome !!


