Towards the precise measurement of neutrino mixing parameters with long-baseline experiments

Claudio Giganti Roma 3 INFN Seminar February 21st, 2018

Outline

Neutrino oscillations

Long baseline experiments

Physics case

T2K and NOvA

Most of NOvA results taken from Alexander Radovic wine&cheese seminar

*****Different approaches to oscillation analyses

*****Results

*****Prospects

Neutrino oscillations

- First introduced by Bruno Pontecorvo in 1957
- Neutrinos are produced in flavor eigenstates ν_e, ν_µ, ν_τ that are linear combination of mass eigenstates ν₁, ν₂, ν₃
- Neutrinos propagate as mass eigenstates
- At the detection a flavor eigenstate is detected → it can be different from the one that was produced

Neutrino oscillation implies massive neutrinos

$$P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$$

Super-Kamiokande (1998)

Solar neutrinos

***** The Sun is a source of electron neutrinos

Several experiments since the sixties were sensitive to the Charged Current interactions

All consistently observed a deficit with respect to the expected neutrino flux

* SNO (2002): also sensitive to Neutral Current ($v_e + v_\mu + v_\tau$)

SNO results (2002)

- Solar neutrino problem solved by SNO
- **Observe a lower flux of** CC only but the expected flux of NC!

v_e oscillate into a mixing of V_e , V_μ , V_τ

Charged current \rightarrow only $v_e \rightarrow$ deficit of ~2/3

Neutral current $\rightarrow v_{e}, v_{\mu}, v_{\tau} \rightarrow$ expected flux

Neutrino oscillations! 2015 Nobel prize!

Artificial sources of neutrinos

*Neutrino oscillations discovered with solar and atmospheric neutrinos

Second Secon

***** Ideal for discoveries (span several ranges of Δm^2)

Cannot be tuned → you take whatever it's produced → Not the best sources for precision measurements

Reactors \rightarrow reactor spectrum is fixed but the distance can be tuned (KamLAND for θ_{12} , DayaBay/DChooz/RENO for θ_{13} , JUNO for Mass Ordering)

*****Accelerators \rightarrow can tune neutrino energy and the distance

***** Well defined L/E \rightarrow maximize oscillation probability (knowing Δm^2)

***** Sensitive to 5 oscillation parameters (θ_{23} , θ_{13} , Δm^2_{23} , δ_{CP} and mass ordering)

***** Can alternatively produce beam of ν_{μ} or $\overline{\nu}_{\mu} \rightarrow$ study CP violation

 $P(\nu_{\mu} \rightarrow \nu_{\mathbf{x}}) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$

Neutrino mixing ~ 2011

How to measure θ_{13}

Reactors (DChooz, RENO, Daya Bay)

✓ Disappearance of $\overline{\nu}_e P(\overline{\nu}_e \rightarrow \overline{\nu}_e)$ ✓ $\overline{\nu}_e$ produced in nuclear reactors ✓ Neutrino energy few MeV ✓ Distance L ~ I km

✓ Signature: disappearance of the $\overline{\nu}_{e}$ produced in the reactor → depends on θ_{13}

 $\overline{P}(\overline{\nu}_{e}^{e} \Rightarrow \overline{\nu}_{e}^{e}) \equiv 1 = sin^{2}2\theta_{13}sin^{2}\Delta_{13}^{13} \\ = cos^{4}\theta_{13}sin^{2}2\theta_{12}sin^{2}\Delta_{12}^{12} \\ = cos^{4}\theta_{13}sin^{2}2\theta_{12}sin^{2}\Delta_{12}^{12}$

Simple dependence on θ_{13} (and Δm_{31}^2

Accelerators (T2K, Nova):

✓ Appearance experiment: $P(v_{\mu} \rightarrow v_{e})$ ✓ v_{μ} neutrino beam ✓ Neutrino energy ~1 GeV ✓ Distance L >~ 300 km ✓ Signature: v_{e} appearance in v_{μ} beam ✓ Degeneracy of θ_{13} , δ_{CP} , sign of Δm^{2}

θ₁₃ measurements

*****Accelerators measured θ_{13} through ve appearance (T2K 2013, NOvA 2015)

10

*****Most precise measurement from reactors (Daya Bay and RENO in 2012)

Neutrino mixing today

Main questions

Several question in neutrinos physics still to be addressed

***Most of them are accessible to accelerators**

* Why mixing so large with respect to CKM? Is θ₂₃ maximal?

***** Which is the hierarchy of neutrino masses?

***** Is CP violated in the leptonic sector?

12

Neutrino beams

- 1. Accelerate protons and strike a target producing pions, kaons
- 2. The hadrons enter a system of magnetic horns where they are selected in charge and focused \rightarrow mostly π^+ or π^-
- 3. The hadrons enter a decay tunnel where they decay into neutrinos ($\pi^+ \rightarrow \mu^+ + \nu_{\mu}$)
- 4. At the end of the decay tunnel a beam dump stops all the particles that are not neutrinos

Off-axis technique

14

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$

Off-axis technique allows to increase the intensity of the beam for at the desired L/E

Maximise the oscillation probability, minimising the backgrounds from high energy neutrinos

On-axis: E_{ν} proportional at P_{π} Off-axis: different P_{π} contribute to the same E_{ν}

T2K (2.5° off axis)

Physics case: ν_{μ} **disappearance**

⇒ Produce a beam of ν_{μ} → most of the neutrinos goes into ν_{τ} → undetectable at T2K or NO ν A energies

*****But we can do a precise measurement of ν_{μ} disappearance that at first order depends on θ_{23} and Δm^{2}_{23}

 $1.27\Delta m_{atm}^2 L$

Physics case: v_e appearance

*When T2K and NOvA were designed their main goal was to search for v_e appearance

Now that we know that θ₁₃ is different from zero the main goals of these experiments is to search for subleading effects

Ve appearance → δ_{CP} and Mass ordering

NOνA: δ_{CP} effect ±20% MH effect ~30%

T2K: δ_{CP} effect ±30% <u>MH effect ~10%</u>

Degeneracies

T2K

The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array.

***L** = 295 km

≵E_ν ~ 600 MeV

Super-Kamiokande: 22.5 kt fiducial volume water Cherenkov detector

J-PARC accelerator:

≭E_ν ~ 2 GeV

15 m

60 m

16m

PCV extrusion + liquid scintillator: Ideal for electron identification

FD: 14 kton, 810km from

source.

ND: 330 ton, 1km from source.

Common ingredients

Flux prediction (NA61/SHINE for T2K, MIPP for NOvA)

Cross-section models

Near Detector analyses but used in very different ways

*****Far detector $\nu\mu$ and νe selections

*****Joint oscillation fits

Flux prediction

*Main uncertainty is the hadron-production cross-section

This can be measured by dedicated experiments, such as NA61/SHINE for T2K

Same proton energy, same target, measure double differential cross-section for hadrons production

*<10% uncertainty on neutrino fluxes, hope to go below 5% with more data

Cross-section models

*****Magnetized ND \rightarrow distinguish ν from $\bar{\nu}$

*****TPC for 3D track reconstruction and PID of all the charge particles

*****Carbon and water target

Mostly forward going acceptance

***Not magnetized FD** \rightarrow distinguish v from \bar{v}

Cherenkov effect → most of the time only the lepton is reconstructed → energy reconstructed assuming QE interactions

*****50 kton water target

***4** π acceptance

***Same technology near and far** \rightarrow but different size and so different acceptance

*****Identical detector \rightarrow easier to extrapolate near to far?

*Higher energy → Cannot assume QE interaction and need to reconstruct all the energy produced in a neutrino interaction

Calorimetric energy reconstruction → Difficult to disentangle cross-section from detector effects

*****Both detectors are not magnetised \rightarrow no measurements of the wrong-sign component

T2K oscillation analysis

 ✓ Flux prediction:
 ✓ Proton beam measurement
 ✓ Hadron production (NA61 and others external data)

 $\frac{\text{ND280 measurements:}}{\nu_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ selections to}}$ constrain flux and cross-sections

Neutrino interactions: Interaction models External cross-section data <u>Prediction at the Far Detector:</u>
 ✓ Combine flux, cross section and ND280 to predict the expected events at SK

Extract oscillation parameters!

 Super-Kamiokande measurements:
 ✓ Select CC v_µ and v_e candidates after the oscillations

ND280 selection

Select charged current muon neutrino interactions in the tracker (FGD)
 Use TPCs to reconstruct momentum, charge and particle ID
 Further subdivide the sample according to the number of pions (0, 1, >1)

- *****ND280 is a magnetized detector \rightarrow lepton charge reconstruction to distinguish v_{μ} from \overline{v}_{μ} interactions
- *****7 samples per FGD are used in the near detector fit (CC0 π , CC1 π and CCN π n ν -mode, CC1Track and CCNTrack for μ + and μ in $\bar{\nu}$ -mode)

ND280 constraints

*Flux and cross-section parameters \rightarrow mostly concentrated to the 0π component of the cross-section

*****Different samples selected at ND280

*Adjust flux and cross-section parameters to predict spectra at SK

Reduction of systematics

Slightly increase the predicted number of events at SK → due to the small excess of events in ND280

*Errors are reduced from ~15% to ~4-7% thanks to the Near Detector fit

	μ-like ν-mode	e-like ν-mode	µ-like ⊽-mode	e-like ⊽-mode
Total Systematics (without ND280)	13.9 %	15.9 %	11.7 %	13.7 %
Total systematics (with ND280)	4.3 %	7.3 %	3.8 %	7.7 %

NOvA oscillation analysis

*****Simpler than T2K, profiting of the two ~identical detectors

*****Erec spectra at ND \rightarrow Etrue spectra at ND \rightarrow Far to Near ratio \rightarrow Etrue spectra at FD \rightarrow Erec spectra at FD

*****But not so simple!

NOvA event selection

***NOvA** far detector is operated on-surface so cosmics constitutes an important source of background

Continuous development of reconstruction algorithm to reduce the cosmic background and select clean samples of µ and e

NOvA energy reconstruction

Reconstructed energy combines E_{had} and E_µ

Observed ND spectrum is converted into true and then extrapolated to far

It might be more difficult to distinguish between detector and cross-section effects → if it's a detector effect far/near ratio is unchanged, if it's a cross-section effects should also affect the far/near ratio!

New NOvA analysis

Do something more refined to separate detector from cross-section effects by separating the sample in different bins of hadronic energy

*****The far to near ratio is then propagated independently for each bin

Oscillation analysis

Both collaborations now do a full joint analysis

***T2K:** v_e , \overline{v}_e , v_μ and \overline{v}_μ

***NO** ν A: ν_e and $\nu_{\mu} \rightarrow$ antineutrinos samples coming soon

+ avpacted events

*****In order to make the presentation clearer I'll show first ν_{μ} disappearance (θ_{23} , Δm_{23}) and then appearance (θ_{13} , δ_{CP} , Mass Ordering) results

T2K Far Detector event selection

MC exp	New SK s	selection	Old SK selection		
	Candidate	Purity	Candidate	Purity	
ν-mode e-like	69.5	81 %	56.5	81 %	
ν-mode e-like	6.9	79 %	5.6	72 %	
\bar{v} -mode e-like	7.6	62 %	6.1	64 %	
ν-mode μ-like	261.6	80 %	268.7	68 %	
$\bar{\nu}$ -mode µ-like	62.0	80 %	65.4	71 %	

*****Select single-ring events at SK

*****Separate them according to their PID in µ-like and e-like

New optimisation of the selection allowed to increase by ~30% the statistics

T2K ν_{μ} disappearance

NOvA v_{μ} disappearance

Some (mild) tension between T2K and NOvA with NOvA old analysis

*Claim to exclude maximal mixing at 2.6 while T2K is compatible with maximal mixing

*****Also global fits prefer non-maximal θ_{23}

New analysis from NOvA with more stat. and new method for Near to Far extrapolation show that they are now compatible with maximal mixing!

*Approaching T2K level of precision.. is θ₂₃ maximal?

How to be sure

In T2K we developed a procedure to test the robustness of our limits against model dependencies

*Change cross-section model and produce expected spectra at near and far detector

*Fit ND with our nominal model and propagate constraints to FD

*Check effect on oscillation parameters

*If difference is large account for
it in the systematics evaluations

T2K e-like selection

	Data	MC expected Number of events					
	Data	δСР=-π/2	δCP=0	δCP=+π/2	δCΡ=π		
v-mode e-like	74	73.5	61.5	49.9	62.0		
ν-mode e-like+1π	15	6.9	6.0	4.9	5.8		
$\bar{\nu}$ -mode e-like	7	7.9	9.0	10.0	8.9		

*****δCP gives ~20% asymmetry in the event rate

* ν -mode Signal/Background ~4.4 at δ_{CP} =- $\pi/2$

39

T2K appearance

	Data	MC expected Number of events					
	Data	δСР=-π/2	δCP=0	δCP=+π/2	δCΡ=π		
ν-mode e-like	74	73.5	61.5	49.9	62.0		
ν-mode e-like+1π	15	6.9	6.0	4.9	5.8		
$\bar{\nu}$ -mode e-like	7	7.9	9.0	10.0	8.9		

- *
 - $δ_{CP} = -π/2 → maximize ν_e appearance,$ minimize $ν_e$ (~30%)
- \aleph δ_{CP} = π/2 → maximize v_e appearance, minimize v_e (~30%)
- ***** Normal hierarchy \rightarrow same as $\delta_{CP}=-\pi/2$ but smaller effect in T2K (~10%)

(θ₁₃, δ_{CP})

with reactor

without reactor

- * Without reactor constraints: $\sin^2\theta_{13}$ compatible with the one measured by reactors. Prefer values of δ_{CP} in the region around $-\pi/2$
- * With reactor constraints: stronger preference for values of $\delta_{CP} \sim -\pi/2$
- * As expected given the observed number of e-like events in v and \bar{v} mode

T2K δ_{CP} measurement

- **Our data prefer values of** $\delta_{CP} \sim \pi/2$ mostly driven by the large number of events observed in the e-like sample in ν -mode
- Feldman-Cousins method used to define confidence intervals for δ_{CP} → CP conserving values (0,π) excluded at 2σ

NOvA v_e selection

Convolutional neural network (CVN) to select elike events

Signal/Background of 2.3 at δ_{CP}=-π/2 (3π/2)

NOvA appearance results

*Also NOvA prefer values of $\delta CP \sim -\pi/2$ (or 3/2 π) that maximise v_e appearance

*Also prefer normal ordering \rightarrow exclude inverted ordering at almost 2σ for all the values of δ_{CP}

*****No antineutrino data yet

T2K/NOvA comparison

*****Both experiments see a large appearance of $ve \rightarrow$ Compatible with maximal CP violation !

*****Both are still statistically limited!

* More data will help

***** NOvA antineutrino data, summer 2018!

The future

*****T2K and NOvA are both seeing appearance rates compatible with normal ordering and $\delta_{CP} \sim \pi/2 \rightarrow$ This would be the luckiest combination in order to measure both!

***NO** ν A is most sensitive to MO and will release first results with $\bar{\nu}$ this summer!

*****T2K will double its statistics in $\overline{\nu}$ by this summer and have 3σ sensitivity to CPV if enough data will be collected

*****The two collaborations are also working towards a combined analysis (~2021)

ν_{μ} disappearance

More data will also allow precise measurements of the disappearance parameters

*****Investigate if θ_{23} is really maximal or not!

47

T2K and the ND280 upgrade

Goal of the upgrade project: replace the P0D with an horizontal totally active target and 2 horizontal TPCs by 2021

Currently working on R&D and prototypes + simulations

Longer term future

*****NO ν A and T2K will continue to take data, leading the search for δ_{CP} until 2026 \rightarrow more than 3 σ for both, δ CP and Mass Ordering

*Then 2 next-generation LBL experiments will come online: DUNE (US) and Hyper-K (Japan)

*****I don't have time to discuss them today.. but they will collect thousands of neutrino interactions $\rightarrow >5 \sigma$ for mass ordering and (if lucky) for δCP

Hyper-Kamiokande

Hyper-K Design Report (7E21 POT for nu and 20E21 POT for anti-nu)

	signal		BG						Tatal	
		$ u_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \ CC$	$\overline{\nu}_{\mu}$ CC	$\nu_e \ {\rm CC}$	$\overline{\nu}_e$ CC	NC	BG Total	Total
umada	Events	2300	21	10	0	347	15	188	560	2880
ν mode Eff.(%)	Eff.(%)	63.6	47.3	0.1	0.0	24.5	12.6	1.4	1.6	
ā mada	Events	289	1656	3	3	142	302	274	724	2669
<i>v</i> mode	Eff. (%)	45.0	70.8	0.03	0.02	13.5	30.8	1.6	1.6	

assuming δ_{CP}=0

Conclusions

*Neutrino oscillations have entered the precision era

Long-Baseline experiments are the best experiments to precise measure oscillation parameters, investigating sub-leading order effects

*****T2K and NOvA are currently seeing (very) first hints of $\delta_{CP} \sim \pi/2$, mass ordering ~ normal and θ_{23} ~ maximal

Fully compatible results with two very different experiments

★ Still statistically limited → more data will come in the next years

We hope to have 3σ measurements for δCP and MO with the currently running experiments

*Precision measurements and 5σ discovery of δ CP will need a next generation of experiments \rightarrow DUNE and Hyper-K

Neutrino cross sections

*At T2K energies the dominant contributions to the cross section are quasi-elastic

*Other contributions with production of pions in the final state are also important

*Need to take into account nuclear effects (2p-2h, FSI that might lead to pion absorption, ...)

*New parametrisation of the cross-section modelling

Bayesian analysis

- [★] Dependence of the δ_{CP} exclusion on the prior (flat in δ_{CP} or sin(δ_{CP})) → CP conserving values outside 94.5% Credible Intervals
- From posterior probability weak preference for NH and second octant (as for the frequentist analysis)

	sin²θ ₂₃ <0.5	sin²θ ₂₃ >0.5	Sum
Normal hierarchy (Δm ² ₃₂ >0)	0,193	0,674	0,868
Inverted hierarchy (Δm ² ₃₂ >0)	0,026	0,106	0,132
Sum	0,219	0,781	

Towards T2K-II

*****T2K was originally approved to collect 7.8x10²¹ pot

- ***** Driven by sensitivity to θ_{13}
- *****Proposal for an extended run
 - ***** T2K-II \rightarrow 20x10²¹ pot
- SK will also be upgraded with Gadolinium → start preparation work in June 2018

To reach such statistics (and be ready for HK) we will upgrade the Main Ring power supply to reach 1.3 MW operations

			Signal	Signal	Beam CC	Beam CC	
	True δ_{CP}	Total	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_e + \bar{\nu}_e$	$\nu_{\mu} + \bar{\nu}_{\mu}$	NC
ν -mode	0	454.6	346.3	3.8	72.2	1.8	30.5
ν_e sample	$-\pi/2$	545.6	438.5	2.7	72.2	1.8	30.5
$\bar{\nu}$ -mode	0	129.2	16.1	71.0	28.4	0.4	13.3
$\bar{\nu}_e$ sample	$-\pi/2$	111.8	19.2	50.5	28.4	0.4	13.3

New SK selection

δCP exclusion

56

*The exclusion of CP conserving values is stronger than the expected sensitivity

Is it reasonable?

*We run many toys for different oscillation parameters with statistical and systematics variation \rightarrow NH and $\delta_{CP}=-\pi/2$

*****30% of the experiments exclude δ_{CP}=0 at >2σ

***20% of the experiments** exclude $\delta_{CP}=\pi$ at >2 σ

NOvA systematics

	Total Observed	Expectation at Best Fit	Total Background	Cosmic	Neutral Current	Other Beam
All Q Events	126	129	9.24	5.82	2.50	0.96

