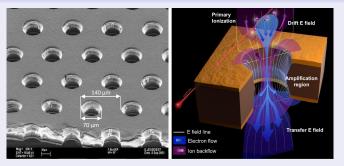


MPGDs for Fast Timing Applications (MPGD-FaTimA) The Big Picture

Piet Verwilligen

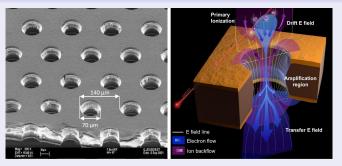

INFN sez. Bari

MPGD FaTimA meeting 2 December 21th 2017, Bari

Challenges

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)

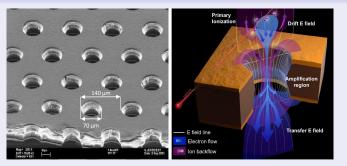


Advantages:

- Photo-lithographic techniques allowed to produce Micro Patterned detectors
- Main Characteristics: High rate capability (> 50 MHz/cm²), good spatial resolution (50 μm), high efficiency (≥ 95%), time resolution of O(5–10 ns)
- flexible detector structures (cfr. cylindrical trackers for KLOE and BES-III)

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)


Advantages:

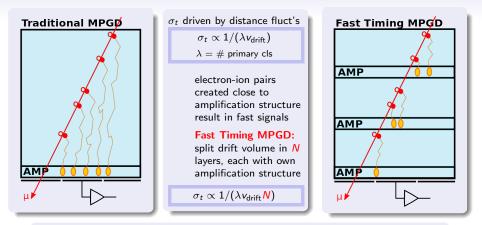
- Two separated regions: drift region (creation of electron-ion pairs) and gain region (multiply drifted electrons to observable electric signal)
- Rate capability is improved by fast collection of postive ions
- MPGD Time resolution driven by fluctuations in creation of electron-ion pairs

MPGDs for Fast Timing Applications (MPGD-FaTimA) , The Big Picture

Micro Pattern Gaseous Detector (MPGD)

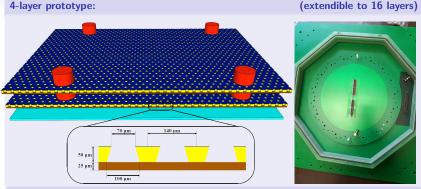
Example: Gas Electron Multiplier (GEM)

Drawbacks:


- Single Stage Gain limited to few 10^3 \Leftrightarrow Wire detectors: 10^4 – 10^5
- Recently μ-RWELL: Gains of few 10⁴ with LHCb Triple-GEM Gas (Ar:CO₂:CF₄)
- Discharges Limits Maximum Gain and provoking irriversible damage

MPGDs for Fast Timing Applications (MPGD-FaTimA), The Big Picture

Challenges


Fast Timing MPGD Principle

- \bullet resistive structure \Rightarrow signal from any layer induced in readout
- \bullet resistive structure \Rightarrow limits development of discharges
- time resolution should improve with N = number of layers

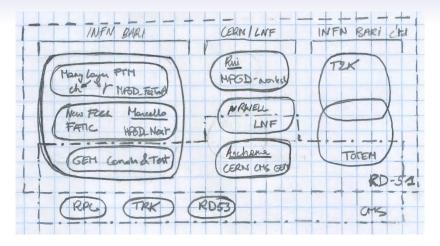
MPGDs for Fast Timing Applications (MPGD-FaTimA) , The Big Picture

Challenges

Single layer specifications:

- Drift layer: 250 µm drift layer
- Gain layer: 50 μ m kapton
- Support Layer: 200 μ m
- Resistive coating: 10–100 nm, \sim 100 M Ω/\Box (Blue: Diamond Like Carbon: DLC)

(Yellow: GEM foil: 70 μm hole, 140 μm pitch)


(Brown: Pre-Preg (glue) + FR4 PCB)

(Red: Dupont Coverlay spacers)

MPGDs for Fast Timing Applications (MPGD-FaTimA) , The Big Picture

Research Environment: INFN Ba, LNF, CERN

 "Competitor": Picosec (CERN/CEA Saclay/Greece): 100 ps (but likely not rad-hard, cheap and difficult to go to large area due to γ-cathode)

MPGDs for Fast Timing Applications (MPGD-FaTimA), The Big Picture

Challenges

FTM Funding in CSN-V

MPGD Next (2016-2018):

PI Silvia Dalla Torre

- groups INFN (Trieste, Roma, Bari, LNF) R&D on MPGDs: THGEM, Resistive MM, FTM, $\mu \rm RWELL$
- New Structures: (*PI: Marcello Maggi*): R&D of new FCCL (125 μm, Cu-DLC-PI-DLC-Cu, ...), study elementary cell
- Electronics: (*PI: Antonio Ranieri*): R&D of Front-End Chip for Fast Timing MPGD
 - first submission to foundary (Dec 2016) funded by CSN-I

MPGD FaTimA (2016-2017):

PI Piet Verwilligen

- development of FTM for <u>Fast Timing Applications</u> (FaTimA)
 - demonstrate fast timing of multi-layer FTM for charged particles (HEP)
 - adapt multi-layer FTM for 511 keV photons (TOF-PET)

FTM Challenges

FTM requirements:

- detection of single photo-e⁻ (closest) instead of all e- in drift (*i.e. factor 10 reduction in charge*)
- detection with single amplification layer (*Triple GEM has amplification divided in three stages*)

Therefore:

- \Rightarrow need high gain structure, with low spark/discharge rate
- $\Rightarrow\,$ need low noise detector and low noise electronics
- \Rightarrow need electronics that can process pulse with low charge ($10^4 e^- = 1.6 \, \text{fC}$)
- $\Rightarrow\,$ need electronics that can process and preserve a fast pulse

This Meeting:

Discuss Future plans for Electronics (FATIC v2)

MPGDs for Fast Timing Applications (MPGD-FaTimA), The Big Picture

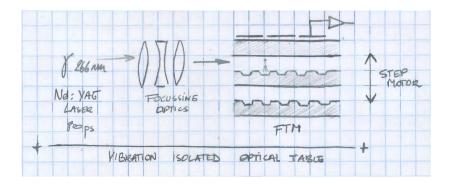
Expectations for 2018

HV-cleaning of FTM-v4:

- \rightarrow demonstrate we reach same (high) gains in single layer as $\mu\text{-}\mathsf{RWELL}$
- \rightarrow use Ar:CO_2, Ar:CO_2:CF_4, Ar:iC_4H_{10}, Ne::iC_4H_{10} mixtures

2 Test FTM with a Laser:

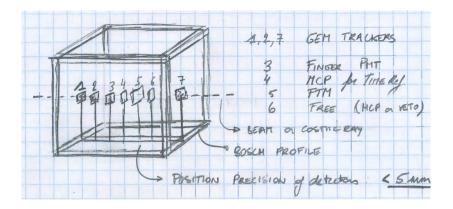
- \rightarrow first test: Antonio Ancona CNR (\sim 335 nm)
- \rightarrow later: purchase 800 ps UV (\sim 265 nm) laser with μ J/pulse)
- \rightarrow will be also the first test for FTM + electronics !!!
- Oevelop Test Beam Setup and test FTM with Beams at CERN → Arrival of 2 Mosaic Boards
 - \rightarrow Procurement of Tracking GEM and MCP for timing reference
- Develop large area FTM-v5: 30 × 30 cm² with spacer less design → Discussed with Rui to make test-setup to check kapton sag
- **Produce FTM with Lower Resistivity:** to study rate capability


(funded by CSN-I RD_FA)

- () in meanwhile keep simulating and bring also the $\gamma\text{-}\mathsf{FTM}$ to a next stage \rightarrow will have a dedicated meeting in January
- mid-2018: start writing proposal for ERC starting grant

Challenges

Laser Tests



MPGDs for Fast Timing Applications (MPGD-FaTimA), The Big Picture

Challenges

(Future)

Test Beam Setup

MPGDs for Fast Timing Applications (MPGD-FaTimA), The Big Picture