Software and tools for MUonE

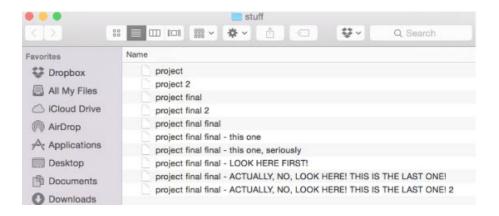
FLAVIO PISANI UNIVERSITY AND INFN OF BOLOGNA, CERN

Software Needed by the experiment

- Monte Carlo simulations of the detector
- Online/Offline alignment and reconstruction algorithms
- Data analysis software

Monte Carlo simulations of the detector

- Requirements:
 - Accurate modelling of MS effects
 - Precise detector and setup geometry description
 - Truthful detector response modelling
- What is already done:
 - Preliminary setup geometry description in Geant IV
 - Preliminary study on the MS effects


There is a lot of work to be done by different people

Software tools for developing

- Versioning tools (CVS, SVN, Git)
 - ► The code grows and keep track of changes is complex
 - ► The team grows and coordinating people is difficult
- Building testing and packaging tools (CMake, CMT)
 - Compile the code on different platforms is challenging
 - ► Handling all the dependencies can be a nightmare

Don't let your project grow before start using the tools

Things to avoid

- How do I build your project?
- It is very easy, just run this 2000 lines bash script that I wrote.

Versioning tools

A versioning tool is not:

- Necessarily a backup
- Usually meant to be used with binary files
- A magic wand that protects you and your colleagues from bad practices

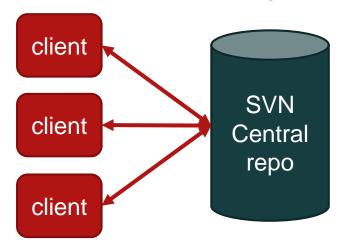
A versioning tool is:

- A powerful tool that helps you keep track of your code
- An easier way of integrating contributions to a project
- A helping hand for tracking down bugs and issues

Versioning tools

repo

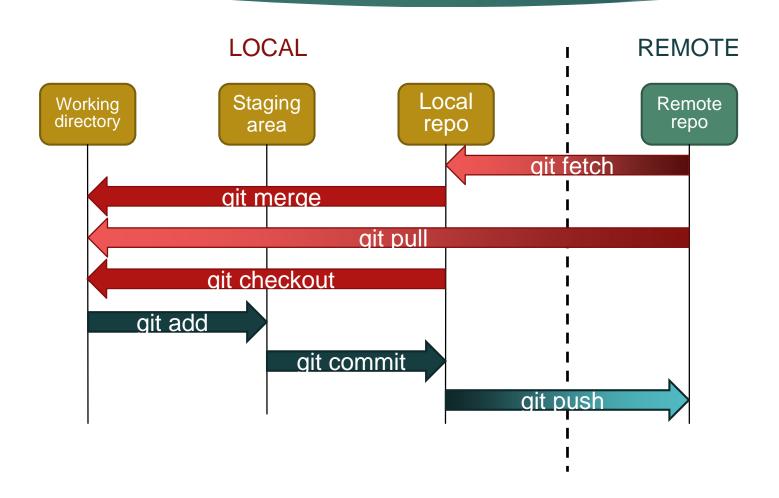
Distributed versioning

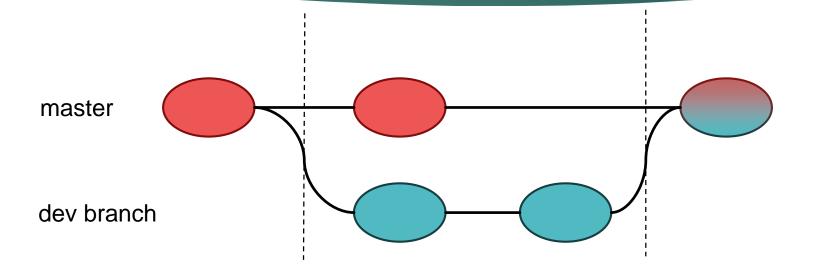

Git repo

Git Git Git

repo

SVN


Centralized versioning


Git basic concepts

- Repository:
 - Stored history of the changes to tracked files
 - Can be local or remote
- Commit:
 - ▶ A single point in the Git history, it Defines a specific version for all the files in the repo.
- Branch:
 - An active line of development.
 - Multiple branches can exists in parallel but only one is active on the working tree

Git operations

Git workflow example

Create a new branch

Develop and test the new feature

Merge changes into master

Remote repo hosting

- Usually a web based service is available for managing repos ACLs and requests
- Typical workflow
 - Copy the repo on your computer (git clone)
 - ▶ Update and commit the code (keep the master branch clean)
 - Make a request to merge you changes into master (pull/merge request)
- Widely used services: GitHub and GitLab

Few words on CMake

What CMake is?

CMake is a tool for building and testing software packages

Why CMake?

- It is system and compiler independent
- It requires minimal configuration (compared to other build systems)
- It is easy to manage and maintain

CMake basic workflow

- Write CMake configuration file(s) CMakeLists.txt
- Run CMake and generate all the build folder structure and makefiles
- Make your project

```
$>mkdir build
$>cd build
$>cmake ..
$>make
```

Summary

- There is a significant and non trivial amount of software to write
- This works will be shared among different people
- To ease this task we should use the proper development tools
- Because this is a new project we should start using the tools as early as possible

Thank you for your attention

In case of fire

1. git commit

2. git push

3. leave building