

Baryons in the Dyson-Schwinger approach

Gernot Eichmann

IST Lisboa, Portugal

Workshop "Bound states in strongly coupled systems" Florence, Italy

March 12, 2018

Why?

QCD Lagrangian: $\mathcal{L} = \bar{\psi} \left(\partial \!\!\!/ + ig A \!\!\!/ + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a$

- · origin of mass generation and confinement?

barvons

	u	d	S	С	b	t
Current mass [GeV]	0.003	0.005	0.1	1	4	175
"Constituent" mass [GeV]	0.35	0.35	0.5	1.5	4.5	175

alueballs?

• need to understand spectrum and interactions!

Mesons								
0-+	0++	1-+	1	1++	1+-	2-+	2++	3
$\pi(140)$ $\pi(1300)$ $\pi(1800)$	a ₀ (980) a ₀ (1450) a ₀ (1950)	π ₁ (1400) π ₁ (1600)	ho(770) ho(1450) ho(1570) ho(1570) ho(1700) ho(1900)	a1(1260) a1(1420) a1(1640)	b1(1235)	π ₂ (1670) π ₂ (1880)	a ₂ (1320) a ₂ (1700)	ρ ₈ (1690) ρ ₃ (1990)
K(494) K(1460) K(1830)	K°(800) K°(1430) K°(1950)		K*(892) K*(1410) K*(1680)	K ₁ (1400) K ₁ (1650)	K ₁ (1270)	$egin{array}{c} K_2(1580) \ K_2(1770) \ K_2(1820) \end{array}$	K^o₂(1430) K ^o ₂ (1980)	K [*] ₈ (1780)
$\eta(548)$ $\eta'(958)$ $\eta(1295)$ $\eta(1405)$ $\eta(1405)$ $\eta(1475)$ $\eta(1760)$	$f_0(500)$ $f_0(980)$ $f_0(1370)$ $f_0(1500)$ $f_0(1710)$		ω (782) ϕ (1020) ω (1420) ω (1650) ϕ (1680)	f1(1285) f1(1420) f1(1510)	h ₁ (1170) h ₁ (1380) h ₁ (1595)	η₂(1645) η ₂ (1870)	$f_2(1270)$ $f_2(1430)$ $f_3(1525)$ $f_3(1565)$ $f_3(1640)$ $f_3(1810)$ $f_3(1910)$ $f_3(1950)$	ω ₃ (1670) φ ₃ (1850)

Baryons

1+ 2	1- 2	3 ⁺	8- 2	5 ⁺ 2	5-	7+ 2
N(939) N(1440) N(1710) N(1880)	N(1535) N(1650) N(1895)	N(1720) N(1900)	N(1520) N(1700) N(1875)	N(1680) N(1860) N(2000)	N(1675)	N(1990)
∆(1910)	∆(1620) ∆(1900)	∆(1232) ∆(1600) ∆(1920)	∆(1700) ∆(1940)	∆(1905) ∆(2000)	∆(1930)	∆(1950)
Λ(1116) Λ(1600) Λ(1810)	A(1405) A(1670) A(1800)	Λ(1890)	A(1520) A(1690)	∆(1820)	A(1830)	
Σ(1189) Σ(1660) Σ(1880)	Σ(1750)	Σ(1385)	Σ(1670) Σ(1940)	Σ(1915)	Σ(1775)	
E(1315)		E(1530)	표(1820)			
		Ω(1672)				

< ロト < 回 ト < 三 ト < 三 ト</p>

Gernot Eichmann (IST Lisboa)

March 12, 2018 2/22

1

590

Gernot Eichmann (IST Lisboa)

э March 12, 2018 3/22

590

Gernot Eichmann (IST Lisboa)

э March 12, 2018 3/22

590

Gernot Eichmann (IST Lisboa)

Э March 12, 2018 3/22

590

イロト イロト イモト イモト

Hadrons in QCD

Lattice: extract baryon poles from (gauge-invariant) two-point correlators:

$$G(x - y) = \langle 0 \mid T [\Gamma_{\alpha\beta\gamma} \psi_{\alpha} \psi_{\beta} \psi_{\gamma}](x) [\overline{\Gamma}_{\rho\sigma\tau} \overline{\psi}_{\rho} \overline{\psi}_{\sigma} \overline{\psi}_{\tau}](y) \mid 0 \rangle = \int \mathcal{D}[\psi, \overline{\psi}, A] e^{-S} B(x) \overline{B}(y)$$

$$G(\tau) \sim e^{-m\tau} \iff G(P^2) \sim \frac{1}{P^2 + m^2}$$

$$(100) = 100 \text{ M}(1710) = 100 \text{ M}(1400) = 100 \text{ M}(1710) = 100 \text{ M}(1710$$

Hadrons in QCD

Lattice: extract baryon poles from (gauge-invariant) two-point correlators:

$$G(x-y) = \langle 0 \mid T [\Gamma_{\alpha\beta\gamma} \psi_{\alpha} \psi_{\beta} \psi_{\gamma}](x) \underbrace{\left[\tilde{\Gamma}_{\rho\sigma\tau} \bar{\psi}_{\rho} \bar{\psi}_{\sigma} \bar{\psi}_{\tau} \right](y)}_{\overline{B}(y)} | 0 \rangle = \int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} B(x) \overline{B}(y)$$

$$= \lim_{\substack{x_{1} \to x \\ y_{1} \to y}} \Gamma_{\alpha\beta\gamma} \bar{\Gamma}_{\rho\sigma\tau} \underbrace{\left\langle 0 \mid T \psi_{\alpha}(x_{1}) \psi_{\beta}(x_{2}) \psi_{\gamma}(x_{3}) \bar{\psi}_{\rho}(y_{1}) \bar{\psi}_{\sigma}(y_{2}) \bar{\psi}_{\tau}(y_{3}) \mid 0 \right\rangle}_{x_{1} \to y} \xrightarrow{x_{2} \to G} \underbrace{G \to y_{2}}_{x_{1} \to y_{1}}$$

$$= x \underbrace{G \to y}_{x_{1} \to y} x \underbrace{F^{2} \to -m_{x}^{2}}_{x_{2} \to -m_{x}^{2}} x \underbrace{F^{2} \to -m_{x}^{2}}_{x_{1} \to y_{1}} x \underbrace{F^{2} \to -m_{x}^{2}}_{x_{2} \to -m_{x}^{2}} x \underbrace{F^{2} \to -m_{x}^{2}}_{x_{1} \to y_{1}} x \underbrace{F^{2} \to -m_{x}^{2}}_{x_{1} \to -m_{x}^{2}}_{x_{1$$

Alternative: extract gauge-invariant baryon poles from gauge-fixed quark 6-point function:

Bethe-Salpeter wave function: residue at pole, contains all information about baryon $\langle 0 | T \psi_{\alpha}(x_1) \psi_{\beta}(x_2) \psi_{\alpha}(x_3) | \lambda \rangle$

QCD's n-point functions

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + ig A + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/$$

DSEs = quantum equations of motion: derived from path integral, relate n-point functions

Quantum "effective action":

- · infinitely many coupled equations
- reproduce perturbation theory, but **nonperturbative**
- systematic truncations: neglect higher n-point functions to obtain closed system

Some Reviews:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, von Smekal, Phys. Rept. 353 (2001) GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016), 1606.09602 [hep-ph]

QCD's n-point functions

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Gluon propagator

• Three-gluon vertex

 $\begin{array}{c} F_1 \left[\ \delta^{\mu\nu} (p_1 - p_2)^{\rho} + \delta^{\nu\rho} (p_2 - p_3)^{\mu} \\ + \ \delta^{\rho\mu} (p_3 - p_1)^{\nu} \right] + \dots \end{array}$

Agreement between lattice, DSE & FRG within reach

→ Christian Fischer, Joannis Papavassiliou, Daniele Binosi · Quark-gluon vertex

$\textbf{DSEs} \rightarrow \textbf{Hadrons?}$

Bethe-Salpeter approach:

use scattering equation $G = G_0 + G_0 K G$

- still exact to begin with, kernel is black box
- but can be derived together with QCD's n-point functions. Important to preserve symmetries!

$$P^2 \longrightarrow -m^2$$

Homogeneous BSE for BS wave function:

$\textbf{DSEs} \rightarrow \textbf{Hadrons?}$

Bethe-Salpeter approach:

use scattering equation $G = G_0 + G_0 K G$

- still exact to begin with, kernel is black box
- but can be derived together with QCD's n-point functions. Important to preserve symmetries!

$$P^2 \longrightarrow -m^2$$

Homogeneous BSE for **BS wave function**

... or BS amplitude:

• Meson Bethe-Salpeter equation in QCD:

- $K(M) \ G(M) \ \phi_i(M) = \lambda_i(M) \ \phi_i(M)$
- Depends on QCD's n-point functions, satisfy DSEs:

• Kernel derived in accordance with chiral symmetry:

Eigenvalues in **pion** channel:

Quark propagator has **complex singularities:** no physical threshold

Sac

 $\exists \rightarrow$

• Meson Bethe-Salpeter equation in QCD:

- $K(M) \ G(M) \ \phi_i(M) = \lambda_i(M) \ \phi_i(M)$
- Depends on QCD's n-point functions, satisfy DSEs:

• Kernel derived in accordance with chiral symmetry:

Rainbow-ladder: effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Eigenvalues in pion channel:

Quark propagator has **complex singularities:** no physical threshold

 $\exists \rightarrow$

୬ < ୯ 8/22

• Meson Bethe-Salpeter equation in QCD:

• Depends on QCD's n-point functions, satisfy DSEs:

• Kernel derived in accordance with chiral symmetry:

Rainbow-ladder: effective gluon exchange

$$\alpha(k^{2}) = \alpha_{\rm IR}\left(\frac{k^{2}}{\Lambda^{2}}, \eta\right) + \alpha_{\rm UV}(k^{2})$$

adjust scale Λ to observable, keep width η as parameter

Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Eigenvectors = BS amplitudes

Gernot Eichmann (IST Lisboa)

March 12, 2018 8/22

Pion is Goldstone
 boson: m_π² ~ m_q

· Light meson spectrum beyond rainbow-ladder

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

- Charmonium spectrum Fischer, Kubrak, Williams, EPJ A 51 (2015)
- 10.4 m [GeV]X + 2 Y(1D) 10.2 10 9.8 PDG RL 9.6 9.4 0^{-+} 3^{++} 0^{++} 2--- 3^{+}
- · Pion transition form factor

GE, Fischer, Weil, Williams, PLB 774 (2017)

Baryons

Covariant Faddeev equation for baryons:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes ⇒ 3-body effects small? Sanchis-Alepuz, Williams, PLB 749 (2015)
- 2-body kernels same as for mesons, no further approximations:

$$\Psi_{\alpha\beta\gamma\delta}(p,q,P) = \sum_{i} f_i(p^2,q^2,p\cdot q,p\cdot P,q\cdot P) \ \tau_i(p,q,P)_{\alpha\beta\gamma\delta}$$

Lorentz-invariant dressing functions

Dirac-Lorentz tensors carry OAM: s, p, d,...

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

<ロト < 回ト < 回ト < 回ト

Sac

Form factors

510

Consistent derivation of current matrix elements & scattering amplitudes

 $J^{\mu} = e \,\bar{u}(p_f) \left(F_1(Q^2) \,\gamma^{\mu} + F_2(Q^2) \,\frac{i}{4m} \, [\gamma^{\mu}, Q] \right) u(p_i)$

Kvinikhidze, Blankleider, PRC 60 (1999). GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

rainbow-ladder topologies (1st line):

e

· quark-photon vertex preserves em. gauge invariance, dynamically generates VM poles:

Form factors

Nucleon em. form factors from three-quark equation GE, PRD 84 (2011)

"Quark core without pion cloud"

 similar: N → Δγ transition, axial & pseudoscalar FFs, octet & decuplet em. FFs

Review: GE, Sanchis-Alepuz, Williams, Fischer, Alkofer, PPNP 91 (2016), 1606.09602

Scattering amplitudes

Scattering amplitudes from quark level:

Sar

イロト イポト イヨト イヨト

The role of diquarks

Mesons and 'diquarks' closely related: after taking traces, only factor 1/2 remains ⇒ diquarks 'less bound' than mesons

Pseudoscalar & vector mesons already good in rainbow-ladder

Scalar & axialvector mesons too light, repulsion beyond RL

 $= \frac{1}{2} K$

 \Leftrightarrow

 \Leftrightarrow

- Scalar & axialvector diquarks sufficient for nucleon and Δ
- Pseudoscalar & vector diquarks important for remaining channels

Baryon spectrum

Gernot Eichmann (IST Lisboa)

Strange baryons

Strange baryons

Strange baryons

The role of diquarks?

· Singlet: symmetric variable, carries overall scale:

 $S_0 \sim p_1^2 + p_2^2 + p_3^2 + \frac{M^2}{2}$

• **Doublet:**
$$\mathcal{D}_0 \sim \frac{1}{S_0} \begin{bmatrix} -\sqrt{3} (\delta x + 2\delta \omega) \\ x + 2\omega \end{bmatrix}$$

Mandelstam plane, outside: diquark poles! Lorentz invariants can be grouped into multiplets of the permutation group S3: GE, Fischer, Heupel, PRD 92 (2015)

• Second doublet: $\mathcal{D}_1 \sim \frac{1}{\sqrt{3n}} \begin{bmatrix} -\sqrt{3}(\delta x - \delta \omega) \\ x - \omega \end{bmatrix}$

- $f_i(\mathcal{S}_0, \bigcirc, \bigcirc) \rightarrow \text{ full result as before }$

- $f_i(\mathcal{S}_0, \bigcirc, \bigcirc) \rightarrow \text{ same ground-state spectrum,}$ but diquark poles switched off!

イロト 不得 トイヨト イヨト 二日

Sac

Resonances?

• Branch cuts & widths generated by **meson-baryon interactions:** Roper $\rightarrow N\pi$, etc.

· So far: bound states

• Resonance dynamics difficult to implement at quark-gluon level:

Resonances?

Rainbow-ladder vs. lattice:

actual resonance dynamics subleading effect?

 ρ may just be a special case, but baryon spectrum?

Resonances?

Rainbow-ladder vs. lattice:

actual resonance dynamics subleading effect?

 ρ may just be a special case, but baryon spectrum?

Developing numerical tools

Photon and lepton poles produce branch cuts in complex plane: deform integration contour!

0.03

0.02

- · Result agrees with dispersion relations
- Algorithm is stable & efficient
- Can be applied to any integral as long as **singularity locations** known

Weil, GE, Fischer, Williams, PRD 96 (2017)

Developing numerical tools

Rare pion decay $\pi^0 \rightarrow e^+e^-$:

Photon and lepton poles produce branch cuts in complex plane: **deform integration contour!**

- · Result agrees with dispersion relations
- Algorithm is stable & efficient
- Can be applied to any integral as long as **singularity locations** known

Weil, GE, Fischer, Williams, PRD 96 (2017)

Developing numerical tools

Rare pion decay $\pi^0 \rightarrow e^+e^-$:

deform integration contour!

- Result agrees with dispersion relations
- Algorithm is stable & efficient

Photon and lepton poles produce branch cuts in complex plane:

Can be applied to any integral as long as singularity locations known

Weil, GE, Fischer, Williams, PRD 96 (2017)

Integrate behind quark singularities! Windisch, PRC 95 (2017)

Tetraquarks

Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

- 6 ground states, one of them **deuteron** Dyson, Xuong, PRL 13 (1964)
- Dibaryons vs. hidden color? Bashkanov, Brodsky, Clement, PLB 727 (2013)
- Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

only quarks and gluons

- quark interchange and pion exchange automatically included
- dibaryon exchanges

Weise, Nucl. Phys. A805 (2008)

Backup slides
Bethe-Salpeter equations

Simplest: Wick-Cutkosky model

Wick 1954, Cutkosky 1954, Nakanishi 1969, ...

- scalar tree-level propagators, scalar exchange particle
- bound states for M < 2m

 $\begin{array}{c} \hline m \\ m \\ \hline m \\ \hline \end{array} = \begin{array}{c} \hline \end{array}$ $K(M) \ G(M) \ \phi_i(M) = \lambda_i(M) \ \phi_i(M)$

But:

- no confinement: threshold 2m
- not a consistent QFT: would need to solve DSEs for propagators, vertices etc.

Bethe-Salpeter equations

Simplest: Wick-Cutkosky model

Wick 1954, Cutkosky 1954, Nakanishi 1969, ...

- scalar tree-level propagators, scalar exchange particle
- bound states for M < 2m

But:

- no confinement: threshold 2m
- not a consistent QFT: would need to solve DSEs for propagators, vertices etc.

Bethe-Salpeter equations

Simplest: Wick-Cutkosky model

Wick 1954, Cutkosky 1954, Nakanishi 1969, ...

- scalar tree-level propagators, scalar exchange particle
- bound states for M < 2m

But:

- no confinement: threshold 2m
- not a consistent QFT: would need to solve DSEs for propagators, vertices etc.

Form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

 Pion-cloud effects missing (⇒ divergence!), agreement with lattice at larger quark masses.

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp: $\kappa^s = -0.12$ Calc: $\kappa^s = -0.12(1)$ GE, PRD 84 (2011)

< ロ ト < 同 ト < 三 ト < 三 ト

Lattice vs. DSE / BSE

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

Vertex:

Vacuum polarization:

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

 Crossed ladder cannot be added by hand, requires vertex correction!

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

- Crossed ladder cannot be added by hand, requires vertex correction!
- without 3-loop term: rainbow-ladder with tree-level vertex ⇒ 2PI
- but still requires **DSE solutions** for propagators!
- Similar in QCD. nPl truncation guarantees chiral symmetry, massless pion in chiral limit, etc.

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- qqq and q-dq agrees: N, Δ, Roper, N(1535)
- # levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low ⇒ wrong level ordering between Roper and N(1535)

Baryon spectrum

Gernot Eichmann (IST Lisboa)

Baryon spectrum

Resonances

• Current-mass evolution of Roper:

GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

• 'Pion cloud' effects difficult to implement at quark-gluon level:

• Branch cuts & widths generated by **meson-baryon interactions:** Roper $\rightarrow N\pi$, etc.

• Lattice: finite volume, DSE (so far): bound states

Resonance dynamics shifts poles into complex plane, but effects on real parts small?

QED

QED's classical action:

Perturbation theory: expand Green functions in powers of the coupling

$$- \underbrace{-1}_{A(p^2)(ip+M(p^2))} = \underbrace{-1}_{ip+m} + \underbrace{-1}_{p+m} + \cdots \qquad \begin{array}{c} mass \\ function \end{array}$$

$$\underbrace{-1}_{p^2(p^2)(p^2 \delta^{\mu\nu} - p^{\mu}p^{\nu})} = \underbrace{-1}_{p^2 \delta^{\mu\nu} - p^{\mu}p^{\nu}} + \underbrace{-1}_{p^{\mu}} + \underbrace{-1}_{p^{\mu}} + \cdots \\ p^{2} \delta^{\mu\nu} - p^{\mu}p^{\nu} + \cdots \\ F_{1}\gamma^{\mu} - \frac{F_{2}}{2m}\sigma^{\mu\nu}Q^{\nu} + \cdots \\ \gamma^{\mu} + \underbrace{-1}_{p^{\mu}} + \underbrace{-1}_{p^{\mu}} + \cdots \\ F_{1}(p^{\mu} - \frac{F_{2}}{2m}) \sigma^{\mu\nu}Q^{\nu} + \cdots \\ F_{1}(p^{\mu} - \frac{F_{2}}{2m}) \sigma^{\mu\nu}Q^{\nu} + \cdots \\ \gamma^{\mu} + \underbrace{-1}_{p^{\mu}} + \underbrace{-1}_{$$

Quantum "effective action":

 $\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} = e^{-\Gamma}$ \rightarrow \sim \sim \sim \sim \sim \sim

QED

QED's classical action:

Perturbation theory: expand Green functions in powers of the coupling

Dynamical quark mass

• General form of dressed quark propagator:

$$S(p) = \frac{1}{A(p^2)} \frac{-ip + M(p^2)}{p^2 + M^2(p^2)}$$

$$p \qquad S^{-1}(p) = A(p^2) (ip + M(p^2))$$

• Quark DSE: determines quark propagator, input → gluon propagator, quark-gluon vertex

· Reproduces perturbation theory:

$$\begin{aligned} \boldsymbol{S}^{-1} &= S_0^{-1} - \boldsymbol{\Sigma} \quad \Rightarrow \quad \boldsymbol{S} &= S_0 + S_0 \, \boldsymbol{\Sigma} \, \boldsymbol{S} \\ &= S_0 + S_0 \, \boldsymbol{\Sigma} \, S_0 + S_0 \, \boldsymbol{\Sigma} \, S_0 \, \boldsymbol{\Sigma} \, \boldsymbol{S} \\ &= \dots \end{aligned}$$

• If strength large enough $(\alpha > \alpha_{\rm crit})$, chiral symmetry is dynamically broken

- Generates M(p²) ≠ 0 even in chiral limit. Cannot happen in perturbation theory!
- Mass function ~ chiral condensate:

$$-\langle \bar{q}q \rangle = N_C \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} S(p)$$

イロト イポト イヨト イヨト

March 12, 2018 21/22

Dynamical quark mass

Simplest example: Munczek-Nemirovsky model Gluon propagator = δ -function, analytically solvable Munczek, Nemirovsky, PRD 28 (1983)

$$D^{\mu\nu}(k) \Gamma^{\nu}(p,q) \longrightarrow \sim \Lambda^2 \, \delta^4(k) \, \gamma^{\mu}$$

Quark DSE becomes

leads to self-consistent equations for A, M:

$$A = 1 + \frac{2\Lambda^2}{(p^2 + M^2)A}, \qquad AM = m_0 + 2M \frac{2\Lambda^2}{(p^2 + M^2)A}$$

Two solutions in chiral limit: IR + UV

$$\begin{split} M(p^2) &= \sqrt{\Lambda^2 - p^2} & M(p^2) = 0 \\ A(p^2) &= 2 & A(p^2) = \frac{1}{2} \left(1 + \sqrt{1 + 8\Lambda^2/p^2} \right) \end{split}$$

Quark condensate:

$$-\langle \bar{q}q \rangle = N_C \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} S(p) = \frac{2}{15} \frac{N_C}{(2\pi)^2} \Lambda^3$$

 $S(p) = \frac{1}{A(p^2)} \frac{-ip + M(p^2)}{p^2 + M^2(p^2)}$ $S^{-1}(p) = A(p^2) (ip + M(p^2))$

Another extreme case: NJL model, gluon propagator = const, $M(p^2)$ = const, but critical behavior

イロト イポト イヨト イヨト

Nambu, Jona-Lasinio, 1961

Gernot Eichmann (IST Lisboa)

March 12, 2018 21/22

3

Dynamical guark mass

Simplest realistic example: rainbow-ladder

Tree-level guark-gluon vertex + effective interaction:

$$D^{\mu\nu}(k)\,\Gamma^{\nu}(p,q)\,\longrightarrow\,\,\sim\,\frac{\alpha(k^2)}{k^2}\,\left(\delta^{\mu\nu}\,-\,\frac{k^{\mu}k^{\nu}}{k^2}\right)\,\gamma^{\nu}$$

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \boldsymbol{\eta}\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable. keep width n as parameter Maris, Tandy, PRC 60 (1999)

- If strength is large enough ($\alpha > \alpha_{crit}$): DCSB
- All dimensionful quantities ~ A in chiral limit ⇒ mass generation for hadrons!

Classical PCAC relation for $SU(N_f)_A$:

 $\partial_{\mu} \bar{\psi} \gamma^{\mu} \gamma_5 t_a \psi = i \bar{\psi} \{\mathsf{M}, t_a\} \gamma_5 \psi$

At quantum level:

$$f_\pi m_\pi^2 = 2m r_\pi$$

Also $f_{\pi} \sim \Lambda \implies m_{\pi} = 0$ in chiral limit! ⇒ massless Goldstone bosons! イロト イロト イヨト イヨト

3

Extracting resonances

Hadronic coupled-channel equations:

Sato-Lee/EBAC/ANL-Osaka, Dubna-Mainz-Taiwan, Valencia, Jülich-Bonn, GSI, JLab, MAID, SAID, KSU, Giessen, Bonn-Gatchina, JPAC,...

Suzuki et al., PRL 104 (2010)

Microscopic effects?

What is an "offshell hadron"?

Extracting resonances

Photoproduction of exotic mesons at JLab/GlueX:

What if exotic mesons are **relativistic** $q\bar{q}$ states? \Rightarrow study with DSE/BSE!

Diquarks?

• Suggested to resolve 'missing resonances' in quark model: fewer degrees of freedom ⇒ fewer excitations

 QCD version: assume qq scattering matrix as sum of diquark correlations ⇒ three-body equation simplifies to quark-diquark BSE

Oettel, Alkofer, Hellstern Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klähn, Roberts, FBS 46 (2009)

Quark exchange binds nucleon, gluons absorbed in building blocks. Scalar diquark ~ 800 MeV, axialvector diquark ~ 1 GeV Maris FBS 32 (2002), GE, Krassniga, Schwinzert, Alkofer, Ann. Phys. 323 (2008), GE, FBS 57 (2016)

• N and ∆ properties similar in quark-diquark and three-quark approach: quark-diquark approximation is good!

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K L^{\dagger} L \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

- ⇒ all EVs strictly real
- \Rightarrow level repulsion
- ⇒ "anomalous states" removed?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

- ⇒ all EVs strictly real
- \Rightarrow level repulsion
- ⇒ "anomalous states" removed?

Tetraquarks?

Light scalar (0⁺⁺) mesons don't fit into the conventional meson spectrum:

- Why are *a*₀, *f*₀ mass-degenerate?
- Why are their decay widths so different?

 $\Gamma(\sigma, \kappa) \approx 550 \text{ MeV}$ $\Gamma(a_0, f_0) \approx 50-100 \text{ MeV}$

 Why are they so light? Scalar mesons ~ p-waves, should have masses similar to axialvector & tensor mesons ~ 1.3 GeV

イロト イポト イヨト イヨト

Tetraquarks?

What if they were tetraquarks (diquark-antidiquark)? Jaffe 1977, Close, Tornqvist 2002, Maiani, Polosa, Riquer 2004

Four-body equation

$$P^{2} = -M^{2}$$

Structure of the amplitude

• **Singlet:** symmetric variable, carries overall scale:

 $S_0 = \frac{1}{4} \left(p^2 + q^2 + k^2 \right)$

• **Doublet:** $D_0 = \frac{1}{4S_0} \begin{bmatrix} \sqrt{3}(q^2 - p^2) \\ p^2 + q^2 - 2k^2 \end{bmatrix}$

Mandelstam triangle, outside: meson and diquark poles!

Lorentz invariants can be grouped into **multiplets of the permutation group S4:** GE, Fischer, Heupel, PRD 92 (2015)

• Triplet:
$$\tau_0 = \frac{1}{4\mathcal{S}_0} \begin{bmatrix} 2\left(\omega_1 + \omega_2 + \omega_3\right) \\ \sqrt{2}\left(\omega_1 + \omega_2 - 2\omega_3\right) \\ \sqrt{6}\left(\omega_2 - \omega_1\right) \end{bmatrix}$$

tetrahedron bounded by $p_i^2 = 0$, outside: **quark singularities**

• Second triplet: 3dim. sphere

$$\mathcal{T}_{1} = \frac{1}{4S_{0}} \begin{bmatrix} 2(\eta_{1} + \eta_{2} + \eta_{3}) \\ \sqrt{2}(\eta_{1} + \eta_{2} - 2\eta_{3}) \\ \sqrt{6}(\eta_{2} - \eta_{1}) \end{bmatrix}$$

C.

イロト イロト イヨト イヨト

 $f_i(\mathcal{S}_0, \nabla, \mathbf{O})$

Idea: use symmetries to figure out **relevant** momentum dependence

similar:

- Three-gluon vertex GE, Williams, Alkofer, Vujinovic, PRD 89 (2014)
- HLbL scattering for muon g-2 GE, Fischer, Heupel, PRD 92 (2015)

Sac

イロト イポト イヨト イヨト

March 12, 2018 22/22

э

590

< □ > < □ > < □ > < □ > < □ >

March 12, 2018 22/22

э

590

< □ > < □ > < □ > < □ > < □ >

March 12, 2018 22/22

э

590

< □ > < □ > < □ > < □ > < □ >

Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

- 6 ground states, one of them **deuteron** Dyson, Xuong, PRL 13 (1964)
- Dibaryons vs. hidden color? Bashkanov, Brodsky, Clement, PLB 727 (2013)
- Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

only quarks and gluons

- quark interchange and pion exchange automatically included
- dibaryon exchanges

Weise, Nucl. Phys. A805 (2008)

Hadron physics with functional methods

Understand properties of elementary n-point functions

--- mom ---

Calculate hadronic **observables**: mass spectra, form factors, scattering amplitudes, ...

QCD

symmetries intact (Poincare invariance & chiral symmetry important)

 \leftrightarrow

- access to all momentum scales & all quark masses
- compute mesons, baryons, tetraquarks, ... from same dynamics
- systematic construction of truncations

technical challenges: coupled integral equations, complex analysis, structure of 3-, 4-, ... point functions, need lots of computational power! access to underlying nonperturbative dynamics!

Nucleon- Δ - γ transition

Compton scattering

Nucleon polarizabilities:

ChPT & dispersion relations Hagelstein, Miskimen, Pascalutsa, PPNP 88 (2016)

In total: polarizabilities \approx

 $\label{eq:Quark-level effects} \ \leftrightarrow \ \text{Baldin sum rule}$

- + nucleon resonances (mostly Δ)
- + pion cloud (at low η_+)?

First DSE results: GE, FBS 57 (2016)

- Quark Compton vertex (Born + 1PI) calculated, added ∠ exchange
- compared to DRs Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- α_E dominated by handbag, β_M by Δ contribution

\Rightarrow large "QCD background"!

 $\alpha_E + \beta_M \ [10^{-4} \, {\rm fm}^3]$

Tetraquarks in charm region?

 Four quarks dynamically rearrange themselves into dq-dq, molecule, hadroquarkonium; strengths determined by four-body BSE:

イロト イポト イヨト イヨト

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

¥

Hadronic light-by-light scattering

$a_{\mu} [10^{-10}]$		Jegerlehne Phys. Rept.	r, Nyffeler, 477 (2009)	
Exp:	11	659 208.9	(6.3)	_
QED:	11	658 471.9	(0.0)	
EW:		15.3	(0.2)	
Hadronic:				
• VP (LO+H	O)	685.1	(4.3)	
• LBL		10.5	(2.6)	?
SM:	11	659 182.8	(4.9)	
Diff:		26.1	(8.0)	

LbL amplitude: ENJL & MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

¥

Hadronic light-by-light scattering

$a_{\mu} [10^{-10}]$		Jegerlehne Phys. Rept.	r, Nyffeler, 477 (2009)	
Exp:	11	659 208.9	(6.3)	_
QED:	11	658 471.9	(0.0)	
EW:		15.3	(0.2)	
Hadronic:				
• VP (LO+H	D)	685.1	(4.3)	
• LBL		10.5	(2.6)	?
SM:	11	659 182.8	(4.9)	-
Diff:		26.1	(8.0)	

• LbL amplitude at quark level, derived from gauge invariance: GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)