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Motivation to study πK scattering 

• π,K are Goldstone Bosons of QCD → Test Chiral Symmetry Breaking

• Many light resonances appear → Strange SPECTROSCOPY 

Particularly interesting for this workshop on Bound States:
:
• 𝜅𝜅/𝐾𝐾0∗(800) light scalar meson. “needs confirmation”@PDG.

Light scalar mesons longstanding candidates for non-ordinary mesons. 
But still some controversy

• π,K appear as final products of almost all hadronic strange processes:
Examples: B,D, decays, CP violation studies, etc…



The light scalar controversy. The theory side... classification
Scalar SU(3) multiplets identification controversial

Too many resonances for many years….
But there is an emerging picture

f0(980)

κ(800)

a0(980)

A Light scalar nonet:

Singlet

Non-strange heavier!!
Inverted hierarchy problem

For quark-antiquark 

f0(500) and f0(980) are 
really octet/singlet mixtures

f0

K(1430)

a0(1450)

+ Another
heavier scalar nonet:

f0 singlet f0

+ glueball

Enough f0 states have been observed: f0(1370), f0(1500), f0(1700). 
The whole picture is complicated by mixture between them (lots of works here)

Only the κ(800) or K0*(800) “Needs Conformation” @ PDG



Most reliable sets:
Estabrooks et al. 78 (SLAC)
Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination

No clear “peak” or phase movement
of 𝜅𝜅/𝐾𝐾0∗(800) resonance

Definitely NO BREIT-WIGNER shape

Mathematically correct to use POLES

Data on πK scattering:

Strong support for K0*(800) from decays of heavier mesons, but rigorous 
model-independent extractions absent. Often inadequate Breit-Wigner formalism



Resonances as poles

The universal features of resonances are their 
pole positions and residues *

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances 

s-plane
Im s

Re s



Why use dispersion relations?    

CAUSALITY: 
Amplitudes T(s,t) are ANALYTIC in 
complex s plane but for cuts for thresholds.
Crossing implies left cut from u-channel threshold

Cauchy Theorem determines T(s,t) at ANY s, 
from an INTEGRAL on the contour

Good for: 1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane
without extra assumptions

If T->0 fast enough at high s, curved part vanishes
Otherwise, determined up to polynomial
(subtractions)
Left cut usually a problem

𝑇𝑇 𝑠𝑠, 𝑡𝑡 = �
𝑡𝑡ℎ

∞ 𝐼𝐼𝐼𝐼 𝑇𝑇(𝑠𝑠𝑠, 𝑡𝑡)
𝑠𝑠 − 𝑠𝑠𝑠

𝑑𝑑𝑠𝑠′ + 𝐿𝐿𝐿𝐿



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?

Analyticity is expressed in the s-variable, not in 𝑠𝑠



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?
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Analyticity is expressed in the s-variable, not in 𝑠𝑠

Important for 
the 𝜅𝜅/𝐾𝐾0∗(800)

• Threshold behavior (chiral symmetry)

• Subthreshold behavior (chiral symmetry →Adler zeros)

• Other cuts (Left & circular)

𝜅𝜅/𝐾𝐾0∗(800)

Less important for other resonances…

Problem shared 
by lattice!• Avoid spurious singularities



Partial—wave vs. fixed-variable Dispersion Relations

So,  we need to get rid of ONE VARIABLE  to write CAUCHY THEOREM 
in terms of the other one

TWO MAIN APPROACHES

1) Integrate one variable and keep the other 
(partial wave dispersion relations)



Due to elastic unitarity: 

𝑆𝑆𝐼𝐼𝐼𝐼(𝑠𝑠) =
1

𝑆𝑆𝐼𝐼(𝑠𝑠)

The second sheet is then: 𝒕𝒕𝑰𝑰𝑰𝑰(𝒔𝒔) =
𝒕𝒕𝑰𝑰(𝒔𝒔)

𝟏𝟏 + 𝟐𝟐𝟐𝟐𝝈𝝈 𝒕𝒕𝑰𝑰(𝒔𝒔)

Recalling S 𝑠𝑠 = 1 + 2𝑖𝑖𝜎𝜎 𝑡𝑡 𝑠𝑠 , 𝜎𝜎 𝑠𝑠 =
𝑘𝑘

2 𝑠𝑠

• For elastic region second Riemann sheet is easy to obtain.

Looking for resonance poles
is nothing but looking for a zero in that denominator
on the first Riemann sheet accesible with the pw DR

Partial Wave Dispersion Relations: General  

• Analytic structure complicated if unequal masses (Circular cuts)

The problem is the left (and circular) cut



Unitarized ChPT 90’s Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner,…

Uses Chiral Perturbation Theory amplitudes inside dispersion relation.

Relatively simple, although different levels of rigour.  Generates all scalars

LEFT CUT APPROXIMATED, not so good for precision: (753 ± 52)-i(235 ±33)MeV

But good for connecting with QCD. Strong hints of non-ordinary nature:
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Correct behavior obtained for vectors

mq dependence
Nebreda, JRP, PRD81 (2010) 054035

becomes 
virtual 
state

Virtual state recently found on lattice
Dudek,Edwards, Thomas, Wilson, PRL. 113 (2014) 18, 182001

Both suggest important “molecular” component

Partial Wave Dispersion Relations:  Unitarized ChPT



Roy-like equations.  70’s Roy, Basdevant, Pennington, Petersen…

00’s Ananthanarayan, Caprini, Colangelo, Gasser, Leutwyler, Moussallam, Decotes Genon, Lesniak, Kaminski, JRP, Ruiz de Elvira, Yndurain…

LEFT CUT WITH PRECISION. 

PRICE: Infinite set of coupled integral equations. VALIDITY LIMITED at ~1.1 GeV

Use data on all waves + high energy . Optional: ChPT predictions for subtraction constants

The most precise and model independent pole determinations

f0(500) and K0*(800) existence, mass and width

firmly established with precision

(658±13)-i(278.5±12) MeV
Descotes-Genon, B. Moussallam 

Partial Wave Dispersion Relations:  Partial Wave DR -3  

Listed @PDG, but not enough for PDG

We have been asked for an independent

dispersive analysisto trigger the PDG revision



Two strategies

SOLVE equations: (Ananthanarayan, Colangelo, Gasser, Leutwyler, Caprini, Moussallam, Stern…)

S and P wave solution for Roy-like equations unique at low energy if high-energy, 
higher waves and scattering lengths known. (in isospin limit)

NO scattering DATA used at low energies ( 𝑠𝑠 ≤ 1 𝐺𝐺𝐺𝐺𝐺𝐺)

Good if interested in low energy scattering and do not trust data.

Uses ChPT/other input for threshold parameter

Already followed by Paris group (B. Moussallam et al.) . Most reliable determination so far.

Impose Dispersion Relations on fits to data. (García-Martín, Kaminski,JRP, Ruiz de Elvira, Ynduráin)

Use any functional form and fit to DATA imposing DR within uncertainties.

Also needs input on other waves and high energy.

(But you can use physical inspiration for clever choices of parameterizations)

THIS IS OUR APPROACH



So,  we need to get rid of ONE VARIABLE  to write CAUCHY THEOREM 
in terms of the other one

TWO MAIN APPROACHES

1) Integrate one variable and keep the other 
(partial wave dispersion relations)

2) Fix one variable in terms of the other 
(fixed-t, hyperbolic relations…)

Partial—wave vs. fixed-variable Dispersion Relations



Fixed-t Dispersion Relations (DR)

Simple analytic structure in s-plane, simple derivation and use 

Left cut: With crossing can be rewritten in terms of physical region

One equation per amplitude. 
High Energy part known since Forward Amplitude~ Total cross section

Calculated up 1.7 GeV for πK (and 1400 MeV for ππ)
JRP, A .Rodas, Phys.Rev. D93 (2016) no.7, 074025

Not directly usable for unphysical sheets but very useful to constraint 
physical amplitudes up to relatively high energies

Most popular: t0=0, FORWARD DISPERSION RELATIONS (FDRs).
(Kaminski, Pelaez , Yndurain, Garcia Martin, Ruiz de Elvira, Rodas )



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 
and anti-symmetric amplitudes
at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π.

where Σ𝜋𝜋𝐾𝐾 = 𝑚𝑚𝜋𝜋
2 + 𝑚𝑚𝐾𝐾

2



(not a solution of dispersión relations,
but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Dispersive analysis of 
πK scattering DATA

up to 1.6 GeV

First observation:
Forward Dispersion relations

Not well satisfied by data
Particularly at high energies

So we use 
Forward Dispersion Relations 

as CONSTRAINTS on fits



How well Dispersion Relations are satisfied by unconstrained fits

Define an averaged χ2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 
threshold

Parameters of the 
unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

+ 𝑑𝑑1/2
2 + 𝑑𝑑3/2

2 + �
𝑘𝑘

(𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘
𝑒𝑒𝑒𝑒𝑒𝑒)2

𝛿𝛿𝑝𝑝𝑘𝑘2
𝜒𝜒2=𝑊𝑊 𝑑𝑑𝑇𝑇+

2 + 𝑑𝑑𝑇𝑇−
2

W roughly counts the number
of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to 
CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



P-waves:  Small changes

SOLUTION from 
previous Roy-Steiner 
approach

From Unconstrained (UFD) to Constrained Fits to data (CFD)

Our fits
describe 
data well



D-waves:  Largest changes of all, but at very high energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)

F-waves:  

Imperceptible changes

Regge parameterizations allowed to vary: Only πK-ρ residue changes by 1.4 
deviations



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



• We have used FORWARD DISPERSION RELATIONS to constraint
𝜋𝜋𝐾𝐾 scattering amplitudes up to 1.6 GeV:

• Simple parameterizations. Easy to use
• Still describe data
• Consistent with unitarity, ANALYTICITY and crossing

Summary of this part

In progress:

We are about to finish the ππ→KK Roy-Steiner analysis up to 1.5 GeV
Working on the Roy-Steiner analysis for πK→πK. See final slides



J. R. Peláez, A. Rodas, J. Ruiz de Elvira

Strange scalar resonances from dispersive 
analysis and analytiicty

Eur.Phys.J. C77 (2017) no.2, 91



Kappa pole from CFD

We have amplitudes that describe data and satisfy dispersion relations up to 1.6 GeV

There is also a κ POLE in the elastic piece of our CFD parameterizations







Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but still not completely model independent

(680±15)-i(334±7.5) MeV



Kappa pole from CFD: Using Padé sequences    A.Rodas & JRP  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91

Almost model independent: Does not assume any particular functional form
(but local determination)

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de ELvira



Kappa pole from CFD

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but still not completely model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
A.Rodas & JRP  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG:                             
(682±29)-i(273±12) MeV 



(658±13)-i(278.5±12) MeV

Model independent analysis

Roy-Steiner SOLUTION from Paris group
Decotes-Genon-Moussallam 2006

Our Roy-Steiner analysis of FIT to data
JRP, A. Rodas, this Monday

(662±13)-i(289±25) MeV

We have:
• Constrained Fit to data (not solved)
• Improved P-wave (data OK)
• Used Hyperbolic DR both in real 

axis and complex plane.
• Improved Pomeron
• Constrained ππ→KK input with DR
• Other technicalities

Independent dispersive 
determination of the 

K0*(800)



• Dispersion relations have been useful for establishing the existence 
of resonances and for rigorous determinations of their parameters

• For  light scalars, they have settled the longstanding σ-meson 
controversy and are on the way to settle that of the κ-meson.

• We have provided first preliminary results for K0*(800)

Summary

Still in progress:

A second dispersive determination with Roy-Steiner and FDRs  will finally settle the
κ/K0*(800) issue at the PDG. Our group has been asked to do it. 
First preliminary results available. Nice agreement with other dispersive aproach

We are about to finish the ππ→KK analysis needed as input for πK→πK
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