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Advantages of dispersion relations

◮ based on fundamental properties of analyticity (causality), unitarity
(probability conservation) and crossing
⇒ model independence

◮ in contrast to effective field theories: dispersive methods describe the
resummation of rescattering effects for considered particles

◮ Khuri-Treiman equations for 3-body decays: final state interaction
(FSI) among all three decay products are fully taken into account

[Khuri and Treiman (1960)]
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Dispersion relation for a single-variable function
complex-valued function f (s): analytic in the entire complex plane apart
from a branch cut on the real axis for s ≥ sth

◮ Cauchy’s theorem:

f (s) =
1

2πi

∮

γ

f (s ′)

s ′ − s
ds ′
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Dispersion relation for a single-variable function
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∮
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◮ lim
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integral along complex arc to
vanish

f (s) =
1

2πi

∫ ∞

sth

discf (s ′)

s ′ − s
ds ′

less restrictive high energy behaviour of f (s) ⇒ subtraction polynomial
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Applications for dispersion relations in 3-body decays

analysis of η → 3π: small phase space and far below any resonances, but
FSI play already an important role

◮ problematic to describe with ChPT

◮ dispersive framework leads to a feasible description

◮ isospin-breaking process: extraction of the quark-mass ratio

[Kambor et al. (1996), Anisovich and Leutwyler (1996), Kampf et al. (2011), Guo et al. (2015),

Colangelo et al. (2017), Albaladejo and Moussallam (2017)]

powerful tool to analyse decays outside the regime of validity for ChPT

◮ η′ → ηππ and η′ → 3π decays [this talk, in preparation]

◮ ω/φ → 3π decays [Niecknig, Kubis and Schneider (2012), Danilkin et al. (2014)]

◮ heavy flavour decays like D → Kππ [Niecknig and Kubis (2015, 2017)]
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Part 1

Dispersive analysis of η′ → ηππ

Eur. Phys. J. C77, 489 (2017) [arXiv:1705.04339 [hep-ph]]

in collaboration with B. Kubis, S. P. Schneider and P. Stoffer

https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5024-1
https://arxiv.org/abs/1705.04339


Why of interest?

◮ main (hadronic) contribution to the total decay width
BR(η′ → ηππ) = 0.652(11) [PDG (2016)]

◮ due to U(1)A anomaly of QCD η′ is not a Goldstone boson:
⇒ standard ChPT breaks down for processes involving an η′

◮ potentially clean access to constrain ηπ scattering (energy far below
KK̄ inelastic threshold)

◮ experimental measurements of decay spectra available
◮ η′ → ηπ+π−: BES-III (2011, 2017) & VES

◮ η′ → ηπ0π0: recent data from A2 & BES-III (2017)

[VES (2007), BES-III (2011, 2017), A2 (2017)]

◮ η′ → ηπ0π0 shows a cusp effect at π+π−-threshold
[Kubis and Schneider (2009)]
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Kinematics of the η′ → ηππ decay

transition amplitude:

〈πi (p1)π
j (p2)η(p3)|T |η′(P)〉 = (2π)4δ(4)(P − p1 − p2 − p3) δ

ij A(s, t, u)

Mandelstam variables:

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p2 + p3)
2

(charged decay channel η′ → ηπ+π− and neutral channel η′ → ηπ0π0

differ only by isospin breaking effects)
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Analytic properties of the η′ → ηππ amplitude

◮ A(s, t, u) has a right-hand branch cut in the complex s-plane,
starting at the ππ-threshold

◮ similar situation in t- and u-planes, branch cuts starting at the
ηπ-threshold

◮ left-hand cuts present due to crossing
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Reconstruction theorem
[Stern et al. (1993), Ananthanarayan et al. (2001), Zdráhal et al. (2008)]

◮ A(s, t, u) can be decomposed into single-variable functions that
possess just a right-hand cut

A(s, t, u) = A0(s) +A1(t) +A1(u)

A0 contains ππ-FSI effects (I=0, S-wave)

A1 contains ηπ-FSI effects (I=1, S-wave)

◮ neglect discontinuities of P- and higher partial waves:

ππ P-wave forbidden by C -Parity

ηπ P-wave has exotic quantum numbers

D- and higher partial waves neglected due to small phase space
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Unitarity condition

s-channel:

(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discA0(s) = 2i θ
(

s − 4M2
π

) [

A0(s)
]

e−iδ0(s) sin δ0(s)

discA1(t) = 2i θ
(

t − (Mη +Mπ)
2
) [

A1(t)
]

e−iδ1(t) sin δ1(t)

⇒ Omnès problem (neglecting crossed-channel interactions)

δ0(s), δ1(t): S-wave ππ and ηπ scattering phase shifts
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Unitarity condition

s-channel:

(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discA0(s) = 2i θ
(

s − 4M2
π

) [

A0(s) + Â0(s)
]

e−iδ0(s) sin δ0(s)

discA1(t) = 2i θ
(

t − (Mη +Mπ)
2
) [

A1(t) + Â1(t)
]

e−iδ1(t) sin δ1(t)

⇒ inhomogeneous Omnès problem

ÂI : inhomogeneities, angular averages of crossed-channel AI functions
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Physical interpretation

Omnès function:

⇒ iteration of two-particle bubble diagrams

inhomogeneities:

⇒ account for crossed-channel interactions
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Khuri-Treiman equations in Omnès representation

dispersive representation for the functions AI in Omnès form:

A0(s) = Ω0(s)

{

α+ βs +
s2

π

∫ ∞

4M2
π

ds ′

s ′2
Â0(s

′) sin δ0(s
′)

|Ω0(s ′)|(s ′ − s)

}

A1(t) = Ω1(t)

{

γt +
t2

π

∫ ∞

(Mη+Mπ)2

dt ′

t ′2
Â1(s

′) sin δ1(t
′)

|Ω1(t ′)|(t ′ − t)

}

Omnès function: [Omnès (1958)]

ΩI (s) = exp

{

s

π

∫ ∞

sth

ds ′

s

δI (s
′)

(s ′ − s)

}

⇒ 3 (real) subtraction constants α, β, γ: free parameters in the dispersion
relation, not fixed by unitarity
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Intermediate summary

◮ set of coupled integral equations:

⇒ A0(s), A1(t): DR involving Â0(s), Â1(t)

⇒ Â0(s), Â1(t): angular integrals over A0(s), A1(t)

◮ input: ππ- and ηπ-scattering phase shifts

◮ problem linear in the 3 subtraction constants

⇒ construct 3 basis solutions

◮ system solved numerically by iteration

◮ subtraction constants up to now undetermined
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Dalitz-plot x-projection
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Dalitz-plot y -projection
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|Ā

(x
,y
)|
2

∫
d
x
d
Φ̄
(x
,y
)

y

fit uncertainty

phase uncertainty

central value

BES-III data
0.8

0.9

1

1.1

1.2

−0.8 −0.4 0 0.4 0.8

16



Isospin breaking effects in η′ → ηπ0π0: the π+π− cusp
isospin breaking due to the π mass difference:

◮ correction for phase space is
straightforward

◮ amplitude must have all thresholds at
the right places

⇒ difficult: ππ-phase shifts derived in
formalism relying on isospin symmetry
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isospin breaking due to the π mass difference:

◮ correction for phase space is
straightforward

◮ amplitude must have all thresholds at
the right places

⇒ difficult: ππ-phase shifts derived in
formalism relying on isospin symmetry

constructing an effective π0π0-phase shift based on the neutral-pion scalar

form factor F0(s) [Colangelo et al. (2009)]

correct analytic structure near the ππ-thresholds:

◮ isospin breaking ∝
√

M2
π+ −M2

π0 (nonanalytic) retained

◮ isospin breaking O
(

M2
π+ −M2

π0

)

(analytic) neglected
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Prediction: Dalitz-plot y -projection for η′ → ηπ0π0
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[Figure from A2 (2017)]

A2 data in good agreement with the dispersive representation
(α, β, γ taken from fit to BES-III (2011) data)
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Part 2

Quark mass dependence of ω → 3π

in collaboration with M. Dax and B. Kubis



Why of interest?

◮ lattice QCD calculations are often carried out at unphysically high
quark masses mq ⇒ tools for extrapolation needed

◮ ChPT allows us to study the mq dependence in the low energy regime
(relates M2

π ∝ m̂, m̂ = mu = md )

◮ unitarised ChPT: allows for a description of 2-body resonances
(e.g. ρ in ππ → ππ scattering)

◮ 3-body resonances (e.g. ω → 3π) are more difficult

⇒ dispersive approach

◮ construct dispersive representation for ω → 3π and keep track of all
Mπ dependences
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P-wave ππ → ππ scattering in unitarised ChPT
[Truong (1991), Dobado and Peláez (1997), Peláez and Ŕıos (2010)]

calculate the P-wave T -matrix for ππ → ππ in ChPT and use the inverse
amplitude method (IAM) for unitarisation: yields an analytic structure
that allows for resonance poles

⇒ ρ pole position and ππ phase shift as function of Mπ

[Hanhart, Peláez and Ŕıos (2008)]
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[Figures by M. Niehus]

effect has been confirmed in lattice simulations
[Bolton, Briceño and Wilson (2016)]
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Decomposition of the ω → 3π amplitude
[Niecknig, Kubis and Schneider (2012)]

amplitude ω(P , n) → π(p1)π(p2)π(p3) is of odd intrinsic parity:

A(s, t, u) = iǫµναβ n
µ pν1 p

α
2 p

β
3 F(s, t, u)

Bose-symmetry allows for odd partial waves only in F(s, t, u)

reconstruction theorem:

F(s, t, u) = F(s) + F(t) + F(u)

approximation: neglecting discontinuities from F - and higher partial waves

unitarity condition:

discF(s) = 2i θ
(

s − 4M2
π

)

[F(s) + F̂(s)] e−iδ(s) sin δ(s)

P-wave ππ scattering phase shift
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Mπ dependences of the amplitude

absolute value squared of the ω → 3π amplitude

|A(s, t, u)|2 =
1

4

[

stu −M2
π(M

2
ω −M2

π)
2
]

× |F(s) + F(t) + F(u)|2

kinematic factor: trivial Mπ dependence and u(s, t,M2
π,M

2
ω)

Mω expected to depend on Mπ: Mω(M
2
π) ≃ Mρ(M

2
π)

dynamic part: several non-trivial Mπ-dependences

F(s) = Ω(s)

{

α+
s

π

∫ ∞

4M2
π

ds ′

s ′
F̂(s) sin δ(s ′)

|Ω(s ′)|(s ′ − s)

}

F̂(s) =
3

2

∫ 1

−1
dz

(

1− z2
)

F
(

t(s, z ,M2
π,M

2
ω)
)

use Mπ-dependent ππ phase shifts as input (unitarised ChPT/lattice QCD)
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ω → 3π decay width vs. Mπ
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φ → 3π decay width vs. Mπ
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Summary and Outlook

◮ dispersion relations are a powerful analysation tool

◮ derived a Khuri-Treiman dispersive representation for 3-body decays
to describe the 3-particle FSI

◮ based on analyticity, unitarity and crossing

◮ input: S-wave ππ- and ηπ/P-wave ππ-scattering phase shifts

◮ 3 subtraction constants/one subtraction constant

◮ dispersive representation for η′ → ηππ in good agreement with
experimental data

◮ allows for book keeping of all Mπ dependences in the ω → 3π decay

◮ ω serves as paradigm case ⇒ framework can be generalised
(already done for φ → 3π: more dynamics due to larger phase space)
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Spares



Mπ dependence of the subtraction constant
dispersive representation of F(s):

F(s) = Ω(s)

{

α+
s

π

∫ ∞

4M2
π

ds ′

s ′
F̂(s) sin δ(s ′)

|Ω(s ′)|(s ′ − s)

}

in general: α can be Mπ dependent

study ρ → ππ in unitarised ChPT vs. VMD model with Mπ-independent
coupling gρππ ⇒ good agreement for Γρ→ππ [Hanhart, Peláez and Ŕıos (2014)]

transfer gρππ(Mπ) = const. to gωρπ(Mπ) = const. in analogy for:

⇒ subtraction constant assumed to be Mπ independent
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Final state interactions in η′ → ηππ
consider to 2 → 2 FSI: ππ → ππ in s- and ηπ → ηπ in t- & u-channel

processes that may contribute to 2 → 2 scattering:

resonance-exchange intermediate loop

restrict to S-wave processes:

resonances intermediate states

ππ-system: f0(500), f0(980) ππ, (KK̄ )

ηπ-system: a0(980), a0(1450) ηπ, (KK̄ )

(mimic intermediate KK̄ contributions in an effective manner)
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ππ-scattering phase shift (S-wave, I = 0)
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ηπ-scattering phase shift (S-wave, I = 1)

0

1

2

3

50 100 150

1 2

d
ec
ay

re
gi
on

a 0
(9
80
)

KK̄ thr.

a 0
(1
45
0)

δ 1
(t
)

t in M2
π

t in GeV2

low-energy uncertainty
high-energy uncertainty

central value

0

1

2

3

50 100 150

1 2

phase of the scalar form factor F ηπ
S (t) calculated out of a coupled channel

T -matrix (ηπ/KK̄ ) [Albaladejo and Moussallam (2015)]

31



Fit to experimental data

known from experiment:

◮ partial decay width [PDG (2016)]

Γη′→ηππ =
1

256π3M3
η′

∫

ds dt |A(s, t, u)|2

◮ measurements of the Dalitz-plot parameters
[VES (2007), BES-III (2011, 2017), A2 (2017)]

|A(s, t, u)|2 ≈ |N |2(1 + ay + by2 +✟✟cx + dx2 + ...),

x ∝ (t − u), y ∝ −s

terms odd in x violate C -parity (not considered in DR)

⇒ can fix the subtraction constants through a fit to data
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Dalitz plot for η′ → ηππ

representation of the physical decay region (allowed phase space) for
three-body decays

experimental data: scatter plot of y ∝ −s vs x ∝ (t − u)

η′ → ηπ+π− Dalitz plot with 43800 events [BES-III (2011)]
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Dalitz-plot parameters
◮ extract Dalitz-plot parameters from the Taylor expansion of our

amplitude

◮ parameters are well reproduced

◮ allows us to extract even higher coefficients of the expansion

◮ higher coefficients extremely tiny

in 10−3 BES-III (2011) data DR fit

a −47± 11± 3 −41± 9± 1
b −69± 19± 9 −88± 7± 11
d −73± 12± 3 −68± 11± 2

κ03[y
3] – 8± 1± 2

κ21[yx
2] – −12± 2± 1

κ04[y
4] – 3± 1± 1

κ22[y
2x2] – 3± 1± 1

κ40[x
4] – 0± 1± 0
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Soft-pion theorem for η′ → ηππ
[Riazuddin and Oneda 1971, Adler 1965 ]

current algebra statement for amplitudes involving π’s
valid in the limit of pπ → 0:

◮ SPT predicts two zeros (crossing symmetry) in A(s, t, u) at

s1 = 0, t1 = M2
η′ , u1 = M2

η & s2 = 0, t2 = M2
η , u2 = M2

η′

◮ protected by chiral SU(2)×SU(2) symmetry ⇒ Adler zeros

removed in models with explicit inclusion of scalar resonance a0(980)
[Deshpande and Truong 1978 ]

study A(s, t, u) in our dispersive framework:

◮ encounter zeros close to soft-π points (slightly smaller |t − u|)

◮ at resonance positions: observe peak in ImA & zero in ReA

⇒ although corrections at soft-π points are O
(

M2
π/(M

2
η′ −M2

a0)
)

:

DR refutes the resonance argument, zeros of the amplitude survive
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Adler-zeros for η′ → ηππ
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