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Advantages of dispersion relations

» based on fundamental properties of analyticity (causality), unitarity
(probability conservation) and crossing
= model independence

> in contrast to effective field theories: dispersive methods describe the
resummation of rescattering effects for considered particles

> Khuri-Treiman equations for 3-body decays: final state interaction
(FSI) among all three decay products are fully taken into account
[Khuri and Treiman (1960)]



Dispersion relation for a single-variable function

complex-valued function f(s): analytic in the entire complex plane apart
from a branch cut on the real axis for s > s,

Ims » Cauchy's theorem:

f(s) = zim%ﬂds’
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Applications for dispersion relations in 3-body decays

analysis of 17 — 3m: small phase space and far below any resonances, but
FSI play already an important role

» problematic to describe with ChPT
» dispersive framework leads to a feasible description

> isospin-breaking process: extraction of the quark-mass ratio

[Kambor et al. (1996), Anisovich and Leutwyler (1996), Kampf et al. (2011), Guo et al. (2015),
Colangelo et al. (2017), Albaladejo and Moussallam (2017))

powerful tool to analyse decays outside the regime of validity for ChPT

> 77/ — nmr and 77/ — 37 decays [this talk, in preparation]

» w/¢ — 37 decays  [Niecknig, Kubis and Schneider (2012), Danilkin et al. (2014)]

» heavy flavour decays like D — Krm [Niecknig and Kubis (2015, 2017)]



Part 1

Dispersive analysis of ' — naw

Eur. Phys. J. C77, 489 (2017) [arXiv:1705.04339 [hep-ph]]

in collaboration with B. Kubis, S. P. Schneider and P. Stoffer


https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5024-1
https://arxiv.org/abs/1705.04339

Why of interest?

» main (hadronic) contribution to the total decay width
BR(n' — nnm) = 0.652(11) [PDG (2016)]

» due to U(1)a anomaly of QCD 7 is not a Goldstone boson:
= standard ChPT breaks down for processes involving an 7’

» potentially clean access to constrain 7 scattering (energy far below
KK inelastic threshold)

> experimental measurements of decay spectra available
» ' — prtr~: BES-III (2011, 2017) & VES
» 1 — nrO70: recent data from A2 & BES-III (2017)

[VES (2007), BES-1Il (2011, 2017), A2 (2017)]

» i’ — 970 shows a cusp effect at 77 -threshold
[Kubis and Schneider (2009))



Kinematics of the " — nmw decay

transition amplitude:

(' (p1) (p2)n(ps)| T | (P)) = (2m)*6™)(P — py — p2 — p3) 67 A(s. t, u)

Mandelstam variables:

s=(p1+p)? t=(pi+p)? u=(p+ps)?

(charged decay channel 7’ — nm ™7~ and neutral channel ' — 77070
differ only by isospin breaking effects)



Analytic properties of the ’ — nmm amplitude

» A(s, t,u) has a right-hand branch cut in the complex s-plane,
starting at the mm-threshold

» similar situation in t- and wu-planes, branch cuts starting at the
nm-threshold

» left-hand cuts present due to crossing



Reconstruction theorem
[Stern et al. (1993), Ananthanarayan et al. (2001), Zdrahal et al. (2008)]

» A(s, t,u) can be decomposed into single-variable functions that
possess just a right-hand cut

A(s, t,u) = Ao(s) + Ax(t) + A1 (v)
Ap contains wr-FSI effects (/=0, S-wave)
A1 contains nm-FSI effects (/=1, S-wave)

> neglect discontinuities of P- and higher partial waves:
7w P-wave forbidden by C-Parity
nm P-wave has exotic quantum numbers

D- and higher partial waves neglected due to small phase space
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Unitarity condition

s-channel:

77/ m 7]/ m

I
|
|

) I

disc = I

|
n T n Tl
|

(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discAo(s) = 2i0(s — 4M2) [Ao(s) ] e~ %(%) sin gy (s)
discA(t) = 2i0(t — (M, + My)?) [Ax(2) ] e ) sin gy (t)

= Omnés problem (neglecting crossed-channel interactions)

do(s), 01(t): S-wave 7w and nm scattering phase shifts
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Unitarity condition

s-channel:
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(analogous for t- & u-channel)

discontinuity equations for the single-variable functions:

discAo(s) = 2i0(s — 4M?2) [Ao(s) + Ao(s)] e %) sin o (s)
discA1(t) = 21 0(t — (My, + My)?) [Aw(t) + A1 ()] e sin gy (t)

= inhomogeneous Omnés problem

Aj: inhomogeneities, angular averages of crossed-channel A; functions
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Physical interpretation

Omnes function:

= iteration of two-particle bubble diagrams

inhomogeneities:

= account for crossed-channel interactions
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Khuri-Treiman equations in Omnes representation

dispersive representation for the functions A; in Omnés form:
s % ds’ Ag(s') sindo(s')
A =Q , — —
o =mue{otier T [ R )

£2 [0 dt’ A;(s) sin 51(75,)}
Aq(t) = Qq(t t+ — 2
1(t) = ){7 T Jmyemey £ 1) — 1)

Ompnés function: [Omneés (1958)]

s [>ds" §(s
Q(s) :exp{—/ — /’( ) }
T/)s, S (5—5)
= 3 (real) subtraction constants «, 3,: free parameters in the dispersion
relation, not fixed by unitarity
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Intermediate summary

» set of coupled integral equations:

= Ao(s), A1(t): DR involving Ag(s), A1 (t)

= Ao(s), A1(t): angular integrals over Ag(s), Ai(t)
» input: - and nm-scattering phase shifts

> problem linear in the 3 subtraction constants

= construct 3 basis solutions
» system solved numerically by iteration

» subtraction constants up to now undetermined
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Dalitz-plot x-projection
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Dalitz-plot y-projection
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Isospin breaking effects in 7/ — n7%7% the 7*7~ cusp
isospin breaking due to the m mass difference:

» correction for phase space is
straightforward

» amplitude must have all thresholds at
the right places

= difficult: mm-phase shifts derived in
formalism relying on isospin symmetry

17
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= difficult: mm-phase shifts derived in
formalism relying on isospin symmetry

constructing an effective 7%7%-phase shift based on the neutral-pion scalar
form factor Fo(S) [Colangelo et al. (2009)]

correct analytic structure near the mm-thresholds:

> isospin breaking o< /M2, — M2, (nonanalytic) retained

> isospin breaking O(M2, — M?;) (analytic) neglected
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Prediction: Dalitz-plot y-projection for ' — nm97°
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[Figure from A2 (2017))

A2 data in good agreement with the dispersive representation
(o, B,y taken from fit to BES-III (2011) data)

18



Part 2

Quark mass dependence of w — 37

in collaboration with M. Dax and B. Kubis



Why of interest?

> lattice QCD calculations are often carried out at unphysically high
quark masses m, = tools for extrapolation needed

» ChPT allows us to study the m, dependence in the low energy regime
(relates M2 o< 1, M = m, = my)

» unitarised ChPT: allows for a description of 2-body resonances
(e.g. pin mm — 77 scattering)

» 3-body resonances (e.g. w — 3m) are more difficult

= dispersive approach

» construct dispersive representation for w — 37w and keep track of all
M. dependences

20



P-wave mm — 77 scattering in unitarised ChPT
[Truong (1991), Dobado and Peldez (1997), Peldez and Rios (2010)]

calculate the P-wave T-matrix for 7m — 7w in ChPT and use the inverse

amplitude method (IAM) for unitarisation: yields an analytic structure
that allows for resonance poles

= p pole position and w7 phase shift as function of M,

[Hanhart, Peldez and Rios (2008)]
100 F
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[Figures by M. Niehus]
effect has been confirmed in lattice simulations

[Bolton, Bricefio and Wilson (2016)]
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Decomposition of the w — 37 amplitude
[Niecknig, Kubis and Schneider (2012))

amplitude w(P, n) — m(p1) m(p2) 7(p3) is of odd intrinsic parity:
A(s, t,u) = i€ ap 0" py ps p39 F(s,t,u)

Bose-symmetry allows for odd partial waves only in F(s, t, u)

reconstruction theorem:
F(s,t,u) = F(s)+ F(t) + F(u)

approximation: neglecting discontinuities from F- and higher partial waves

unitarity condition:
discF(s) = 2i0(s — 4M2)[F(s) + F(s)] e sin o(s)
P-wave 7m scattering phase shift
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M. dependences of the amplitude

absolute value squared of the w — 37 amplitude

As, £, u)|? = %[stu ~ (M2 — M2)?] x |F(s) + F(t) + F(u)

kinematic factor: trivial M, dependence and u(s, t, M2, M2)

23



M. dependences of the amplitude
absolute value squared of the w — 37 amplitude
[Als, £, u)P = 3 [stu — ME(M2 — M2) x |F(s) + F(2) + F(u)P

kinematic factor: trivial M, dependence and u(s, t, M2, M?)
M,, expected to depend on My: M,,(M2) ~ M,(M?)

[Bijnens and Godzinsky (1996)]
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M. dependences of the amplitude

absolute value squared of the w — 37 amplitude
1
[A(s, t, u)]? = 2 lstu — MZ(MZ — M2)?] x | F(s) + F(t) + F(u)[?

kinematic factor: trivial M, dependence and u(s, t, M2, M?)

M,, expected to depend on My: M,(M2) ~ M,(M2)
[Bijnens and Godzinsky (1996)]

dynamic part: several non-trivial M, dependences

o =9@fars [ & () sino(s') i

7 Joe 5 12055 — )
. 3 /1
F(s) = 5/ dz(1 - 2%) F(t(s,z, M2, M?))
~1
use M -dependent 77 phase shifts as input (unitarised ChPT /lattice QCD)
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w — 37 decay width vs. M
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subtraction constant « is fixed at the physical point (black rectangle)
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¢ — 37 decay width vs. M,
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Summary and Outlook

» dispersion relations are a powerful analysation tool

> derived a Khuri-Treiman dispersive representation for 3-body decays
to describe the 3-particle FSI

» based on analyticity, unitarity and crossing
> input: S-wave 77~ and nw/P-wave mr-scattering phase shifts

> 3 subtraction constants/one subtraction constant

» dispersive representation for ' — npmw in good agreement with
experimental data

> allows for book keeping of all M, dependences in the w — 37 decay

> w serves as paradigm case = framework can be generalised
(already done for ¢ — 37: more dynamics due to larger phase space)

26



Spares



M,. dependence of the subtraction constant
dispersive representation of F(s):

B s [ ds’ F(s) sind(s')
R W o
in general: « can be M, dependent

study p — 7 in unitarised ChPT vs. VMD model with M, -independent
coupling gy = good agreement for [, ,x  [Hanhart, Pelsez and Rios (2014)]

transfer gyr-(Myz) = const. to g,,,x(Mxz) = const. in analogy for:

s

™

= subtraction constant assumed to be M, independent
28



Final state interactions in ' — nrw

consider to 2 — 2 FSI: 7 — 77 in s- and nm — nm in t- & u-channel

processes that may contribute to 2 — 2 scattering:

resonance-exchange intermediate loop

restrict to S-wave processes:

resonances intermediate states
wm-system:  fp(500), 7(980) 7, (KK)
nm-system:  ap(980), ap(1450) nr, (KK)

(mimic intermediate KK contributions in an effective manner)

29



nr-scattering phase shift (S-wave, / = 0)

s in GeV?
0 1 2
5
4
3
n
g
2
1 high-energy uncertainty m—
low-energy uncertainty
o L/ central value
0 50 100 150
sin M2
elastic regime: Roy equation analyses [Caprini et al. (2012)]

inelastic regime: study of a coupled channel Omn‘gs matrix[Daub et al. (2016)]
and large-N. ChPT constraints on n'n — (77/KK)
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nm-scattering phase shift (S-wave, | = 1)

t in GeV?
1 2
3 —— ——
~ low-energy uncertainty
high-energy uncertainty m—
P _ central value
56 KKthr
o0
= Pe
=
s g
103
0 - - : . . | . L
50 100 150
tin M2

phase of the scalar form factor FI"(t) calculated out of a coupled channel

T-matrix (nm/KK) [Albaladejo and Moussallam (2015)]
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Fit to experimental data
known from experiment:

» partial decay width [PDG (2016)]

1
25673 M;;’,

r’r]’—>'r]71'7r =

/dsdt |A(s, t, u)|?

» measurements of the Dalitz-plot parameters
[VES (2007), BES-I1I (2011, 2017), A2 (2017)]

|A(s, t, u)]? = |N?(1 + ay + by? + ex + dx® + ...),
x o (t—u), y X —s

terms odd in x violate C-parity (not considered in DR)

= can fix the subtraction constants through a fit to data
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Dalitz plot for ' — nanw

representation of the physical decay region (allowed phase space) for
three-body decays

experimental data: scatter plot of y ox —s vs x o (t — u)

>

(a)

n’ — nr 7~ Dalitz plot with 43800 events [BES-111 (2011)]
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Dalitz-plot parameters

» extract Dalitz-plot parameters from the Taylor expansion of our
amplitude

> parameters are well reproduced
> allows us to extract even higher coefficients of the expansion

> higher coefficients extremely tiny

in 1073 BES-IIl (2011) data DR fit

a —47+11+3 —414+9+1
b —69+194+9 -88+7+11
d ~734+1243 —68+ 1142
ko3[y>] - 8+1+2
K21 [yx?] - —124+241
roaly?] - 34141
Kaa[y?x?] - 3+1+1

Kao[x*] - 0+14+0
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Soft-pion theorem for ' — nrw
[Riazuddin and Oneda 1971, Adler 1965]
current algebra statement for amplitudes involving 7's
valid in the limit of p; — 0:
» SPT predicts two zeros (crossing symmetry) in A(s, t, u) at
s1 =0, t]_:M,gl, Uleg & s =0, t2:M727, U2:M$/
» protected by chiral SU(2)xSU(2) symmetry = Adler zeros

removed in models with explicit inclusion of scalar resonance ap(980)

[Deshpande and Truong 1978]
study A(s, t, u) in our dispersive framework:
» encounter zeros close to soft-m points (slightly smaller |t — u)
» at resonance positions: observe peak in Im A & zero in Re A
; ; 2 2 2.
= although corrections at soft-m points are (’)(I\/I,r/(Mn, - M3)):

DR refutes the resonance argument, zeros of the amplitude survive
35



Adler-zeros for ' — nmwmw
(t — u) in GeV?
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