S-matrix Bootstrap revisited

João Penedones

 ÉCOLE POLYTECHNIQUE FÉdérale de Lausanne

S-matrix Bootstrap I: QFT in AdS [arXiv:1607.06109]
S-matrix Bootstrap II: two-dimensional amplitudes [arXiv:1607.06110]
S-matrix Bootstrap III: higher dimensional amplitudes [arXiv:1708.06765] S-matrix Bootstrap IV: multiple amplitudes [work in progress] with M. Paulos, J. Toledo, B. Van Rees, P. Vieira

GGI Florence, 14th of March, 2017

Motivation

Bootstrap Philosophy: bound the space of theories by imposing consistency conditions on physical observables.

Goal: extend recent success in CFT to massive QFT.

Revisit the S-matrix Bootstrap program of the 60's and 70's.

Outline

- S-matrix Bootstrap in $\mathrm{D}=2$
- S-matrix Bootstrap in $\mathrm{D}>2$
- Multiple Amplitudes Bootstrap in $\mathrm{D}=2$
- Open questions

S-matrix Bootstrap in 2D QFT

2 to 2 Scattering Amplitude

$$
\begin{aligned}
& k_{i}^{2}=m^{2} \\
& s \equiv\left(k_{1}+k_{2}\right)^{2} \\
& t \equiv\left(k_{2}-k_{3}\right)^{2}=4 m^{2}-s \\
& u \equiv\left(k_{3}-k_{1}\right)^{2}=0
\end{aligned}
$$

2 to 2 Scattering Amplitude

$$
\begin{aligned}
& k_{i}^{2}=m^{2} \\
& s \equiv\left(k_{1}+k_{2}\right)^{2} \\
& t \equiv\left(k_{2}-k_{3}\right)^{2}=4 m^{2}-s \\
& u \equiv\left(k_{3}-k_{1}\right)^{2}=0
\end{aligned}
$$

Crossing symmetry: $\quad S(s)=S\left(4 m^{2}-s\right)$

2 to 2 Scattering Amplitude

$$
\begin{aligned}
& k_{i}^{2}=m^{2} \\
& s \equiv\left(k_{1}+k_{2}\right)^{2} \\
& t \equiv\left(k_{2}-k_{3}\right)^{2}=4 m^{2}-s \\
& u \equiv\left(k_{3}-k_{1}\right)^{2}=0
\end{aligned}
$$

Crossing symmetry: $\quad S(s)=S\left(4 m^{2}-s\right)$
Analyticity follows from mass spectrum.

2 to 2 Scattering Amplitude

$$
\begin{aligned}
& k_{i}^{2}=m^{2} \\
& s \equiv\left(k_{1}+k_{2}\right)^{2} \\
& t \equiv\left(k_{2}-k_{3}\right)^{2}=4 m^{2}-s \\
& u \equiv\left(k_{3}-k_{1}\right)^{2}=0
\end{aligned}
$$

Crossing symmetry: $\quad S(s)=S\left(4 m^{2}-s\right)$
Analyticity follows from mass spectrum.

Constraints + question

Crossing: $\quad S(s)=S\left(4 m^{2}-s\right)$
Analyticity: $\quad S\left(s^{*}\right)=[S(s)]^{*}$

Constraints + question

Crossing:

$$
S(s)=S\left(4 m^{2}-s\right)
$$

Analyticity:

$$
S\left(s^{*}\right)=[S(s)]^{*}
$$

Constraints + question

Crossing: $\quad S(s)=S\left(4 m^{2}-s\right)$
Analyticity:

$$
S\left(s^{*}\right)=[S(s)]^{*}
$$

, -

Unitarity: $\quad|S(s)|^{2} \leq 1, \quad s>4 m^{2}$.

Constraints + question

Crossing: $\quad S(s)=S\left(4 m^{2}-s\right)$
Analyticity: $\quad S\left(s^{*}\right)=[S(s)]^{*}$

Unitarity: $\quad|S(s)|^{2} \leq 1, \quad s>4 m^{2}$.
Question: for given spectrum, $\max g_{b}^{2}=?$

Analytic solution

$$
\begin{aligned}
& \qquad S_{o p t}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}} \equiv\left[m_{b}\right](s) \\
& \text { Pole at } s=m_{b}^{2}>2
\end{aligned}
$$

No particle production $\quad\left|S_{o p t}(s)\right|^{2}=1, \quad s>4 m^{2}$.

Analytic solution

$$
\begin{aligned}
& \qquad S_{\text {opt }}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}} \equiv\left[m_{b}\right](s) \quad{ }_{\text {[Cymanzik '61] }}^{[\text {Creutz } 72]} \text { CDD factor } \\
& \text { Pole at } s=m_{b}^{2}>2
\end{aligned}
$$

No particle production $\quad\left|S_{o p t}(s)\right|^{2}=1, \quad s>4 m^{2}$.

Proof:
$h(s) \equiv \frac{S(s)}{\left[m_{b}\right](s)}$

Analytic solution

$$
\begin{aligned}
& \qquad S_{\text {opt }}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}} \equiv\left[m_{b}\right](s) \quad{ }_{\text {[Creutz '72] }}^{\text {[Symanzik '61] }} \\
& \text { Pole at } s=m_{b}^{2}>2
\end{aligned}
$$

No particle production $\quad\left|S_{o p t}(s)\right|^{2}=1, \quad s>4 m^{2}$.

Proof:

$$
h(s) \equiv \frac{S(s)}{\left[m_{b}\right](s)} \Rightarrow \begin{aligned}
& h(s) \text { analytic in the plane minus the ct } \\
& |h(s)| \leq 1 \quad \text { bounded at all boundaries }
\end{aligned}
$$

Analytic solution

$$
\begin{aligned}
& \qquad S_{o p t}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}} \equiv\left[m_{b}\right](s) \quad \begin{array}{l}
\text { [Symanzik '61] } \\
\text { [Creutz '72] }
\end{array} \\
& \text { Pole at } s=m_{b}^{2}>2
\end{aligned}
$$

No particle production $\quad\left|S_{\text {opt }}(s)\right|^{2}=1, \quad s>4 m^{2}$.

Proof:

$$
\begin{array}{r}
h(s) \equiv \frac{S(s)}{\left[m_{b}\right](s)} \Rightarrow \begin{array}{l}
h(s) \text { analytic in the plane minus the cut } \\
|h(s)| \leq 1 \quad \text { bounded at all boundaries }
\end{array} \\
\Downarrow \text { maximum modulus principle } \\
\left|h\left(m_{b}^{2}\right)\right|=\left|\frac{g_{b}^{2}}{\operatorname{Res}_{s=m_{b}^{2}}\left[m_{b}\right](s)}\right| \leq 1
\end{array}
$$

Maximum cubic coupling

$$
S_{o p t}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}
$$

$\log g_{b}^{2}$

Maximum cubic coupling

$$
S_{o p t}(s)=\frac{\sqrt{s\left(4 m^{2}-s\right)}+\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}{\sqrt{s\left(4 m^{2}-s\right)}-\sqrt{m_{b}^{2}\left(4 m^{2}-m_{b}^{2}\right)}}
$$

$\log g_{b}^{2}$

3 stable particles

 $\log g_{111}^{2}$$$
S_{\max m_{1} \text { residue }}=\left\{\begin{array}{l}
-\left[m_{1}\right]\left[m_{2}\right] \\
{\left[m_{1}\right]\left[m_{2}\right]\left[m_{3}\right]} \\
-\left[m_{1}\right]\left[m_{3}\right] \\
{\left[m_{1}\right]\left[m_{3}\right]} \\
-\left[m_{1}\right]\left[m_{2}\right]\left[m_{3}\right] \\
{\left[m_{1}\right]\left[m_{3}\right]} \\
-\left[m_{1}\right]
\end{array}\right.
$$

region A region B region C region D region E region F region G

Numerical approach

Numerical approach

Ansatz:

$$
S_{e x t}(s, t)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\sum_{a, b=0} c_{(a b)} \rho_{s}^{a} \rho_{t}^{b}
$$

Numerical approach

Ansatz:

$$
S_{e x t}(s, t)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\sum_{a, b=0} c_{(a b)} \rho_{s}^{a} \rho_{t}^{b}
$$

Crossing symmetry and analyticity are automatic. Unitarity gives quadratic constraints:

$$
\left|S_{e x t}\left(s, 4 m^{2}-s\right)\right|^{2} \leq 1, \quad s>4 m^{2}
$$

Numerical approach

Ansatz:

$$
S_{e x t}(s, t)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\sum_{a, b=0} c_{(a b)} \rho_{s}^{a} \rho_{t}^{b}
$$

Crossing symmetry and analyticity are automatic.
Unitarity gives quadratic constraints:

$$
\left|S_{e x t}\left(s, 4 m^{2}-s\right)\right|^{2} \leq 1, \quad s>4 m^{2}
$$

Truncate to finite number of variables and quadratic constraints

$$
\begin{aligned}
a+b \leq & N_{\max } \downarrow \\
& \left\{g_{b}^{2}, c_{(a b)}\right\}
\end{aligned}
$$

$$
\text { at } s=s_{1}, s_{2}, \ldots, s_{M}
$$

Numerical approach

Ansatz:

$$
S_{e x t}(s, t)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\sum_{a, b=0} c_{(a b)} \rho_{s}^{a} \rho_{t}^{b}
$$

Crossing symmetry and analyticity are automatic.
Unitarity gives quadratic constraints:

$$
\left|S_{e x t}\left(s, 4 m^{2}-s\right)\right|^{2} \leq 1, \quad s>4 m^{2}
$$

Truncate to finite number of variables and quadratic constraints

$$
\begin{aligned}
a+b \leq & N_{\max } \downarrow \\
& \left\{g_{b}^{2}, c_{(a b)}\right\} \\
& {[\text { Simmons-Duffin '।5] }}
\end{aligned}
$$

$$
\left\{g_{b}^{2}, c_{(a b)}\right\} \quad \text { at } s=s_{1}, s_{2}, \ldots, s_{M}
$$

Use semidefinite programming (SDPB) to maximize g_{b}^{2} subject to these constraints. This reproduces the analytic solution as $N_{\max } \rightarrow \infty$

S-matrix Bootstrap in $\mathrm{d}+1$ QFT

2 to 2 Scattering Amplitude

$$
\left\langle\mathbf{p}_{3}, \mathbf{p}_{4}\right| S\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=\mathbb{1}+i(2 \pi)^{d+1} \delta^{(d+1)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) T(s, t, u)
$$

2 to 2 Scattering Amplitude

$$
\left\langle\mathbf{p}_{3}, \mathbf{p}_{4}\right| S\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=\mathbb{1}+i(2 \pi)^{d+1} \delta^{(d+1)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) T(s, t, u)
$$

Crossing symmetry \& Analyticity:

$$
T(s, t, u)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\frac{g_{b}^{2}}{u-m_{b}^{2}}+\sum_{a, b, c=0} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

2 to 2 Scattering Amplitude

$$
\left\langle\mathbf{p}_{3}, \mathbf{p}_{4}\right| S\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=\mathbb{1}+i(2 \pi)^{d+1} \delta^{(d+1)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) T(s, t, u)
$$

Crossing symmetry \& Analyticity:

$$
T(s, t, u)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\frac{g_{b}^{2}}{u-m_{b}^{2}}+\sum_{a, b, c=0} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

Partial waves:
$S_{\ell}(s)=1+\left.i \frac{\left(s-4 m^{2}\right)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} d x\left(1-x^{2}\right)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) T(s, t, u)\right|_{\substack{t \rightarrow-\frac{1-x}{}\left(s-4 m^{2}\right) \\ u \rightarrow-\frac{1+2}{2}\left(s-4 m^{2}\right)}} ^{x=\cos \theta}$
Unitarity: $\left|S_{\ell}(s)\right|^{2} \leq 1, \quad s>4 m^{2}, \quad \ell=0,2,4, \ldots$

2 to 2 Scattering Amplitude

$$
\left\langle\mathbf{p}_{3}, \mathbf{p}_{4}\right| S\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=\mathbb{1}+i(2 \pi)^{d+1} \delta^{(d+1)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) T(s, t, u)
$$

Crossing symmetry \& Analyticity:

$$
T(s, t, u)=\frac{g_{b}^{2}}{s-m_{b}^{2}}+\frac{g_{b}^{2}}{t-m_{b}^{2}}+\frac{g_{b}^{2}}{u-m_{b}^{2}}+\sum_{a, b, c=0} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

Partial waves:
Gegenbauer polynomial
$S_{\ell}(s)=1+\left.i \frac{\left(s-4 m^{2}\right)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} d x\left(1-x^{2}\right)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) T(s, t, u)\right|_{\substack{t \rightarrow-\frac{1-x}{2}\left(s-4 m^{2}\right) \\ u \rightarrow-\frac{1+x}{2}\left(s-4 m^{2}\right)}}$
Unitarity: $\left|S_{\ell}(s)\right|^{2} \leq 1, \quad s>4 m^{2}, \quad \ell=0,2,4, \ldots \ell_{\text {max }}$
\Rightarrow Quadratic constraints on the variables $\left\{g_{b}^{2}, \alpha_{(a b c)}\right\}$

$$
a+b+c \leq N_{\max }
$$

Maximal cubic coupling in $3+1$ QFT

Maximal quartic coupling

Ansatz with no poles. Maximize $\lambda=\frac{1}{32 \pi} T\left(s=t=u=\frac{4}{3} m^{2}\right)$ (e.g. $\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}$)

Maximal quartic coupling

Ansatz with no poles. Maximize $\lambda=\frac{1}{32 \pi} T\left(s=t=u=\frac{4}{3} m^{2}\right)$ (e.g. $\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}$)

Maximal quartic coupling

Improved ansatz with threshold bound state:

$$
\begin{array}{r}
T(s, t, u)=\beta\left(\frac{1}{\rho_{s}-1}+\frac{1}{\rho_{t}-1}+\frac{1}{\rho_{u}-1}\right)+\sum_{\substack{a, b, c=0 \\
a+b+c \leq N_{\max }}} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
\end{array}
$$

Maximal quartic coupling

Improved ansatz with threshold bound state:

$$
T(s, t, u)=\beta\left(\frac{1}{\rho_{s}-1}+\frac{1}{\rho_{t}-1}+\frac{1}{\rho_{u}-1}\right)+\sum_{\substack{a, b, c=0 \\ a+b+c \leq N_{\max }}} \alpha_{(a b c)} \rho_{s}^{a} \rho_{t}^{b} \rho_{u}^{c}
$$

No particle production?

Multiple Amplitudes Bootstrap in 2D QFT

2 to 2 Scattering Amplitudes

Example: two stable particles

\mathbb{Z}_{2} symmetry :

2 to 2 Scattering Amplitudes

Example: two stable particles

Unitarity: $\quad\left|S_{11 \rightarrow 11}\right|^{2}+\left|S_{11 \rightarrow 22}\right|^{2} \leq 1$
Not zero in optimal solution

Extended Unitarity

Analyticity:

\mathbb{Z}_{2} symmetry : $\quad-\quad+$

Extended Unitarity

Analyticity:

\mathbb{Z}_{2} symmetry : $\quad-\quad+$

Unitarity: $\left|S_{22 \rightarrow 11}\right|^{2}+\left|S_{22 \rightarrow 22}\right|^{2} \leq 1$ $s \geq 4 m_{2}^{2}$

Extended Unitarity

Analyticity:

\mathbb{Z}_{2} symmetry : $\quad-\quad+$ s

$$
\stackrel{\bullet}{m_{2}^{2}} \quad \underset{4 m_{1}^{2} 4 m_{2}^{2}}{2}
$$

$$
m_{1}+m_{2}
$$

Unitarity: $\left|S_{22 \rightarrow 11}\right|^{2}+\left|S_{22 \rightarrow 22}\right|^{2} \leq 1$ $s \geq 4 m_{2}^{2}$
$m_{1}\left\{\begin{array}{l}2 m_{1} \\ m_{2} \\ 0\end{array}\right.$

Extended Unitarity:

$$
2 \operatorname{Im} T_{22 \rightarrow 22}=\frac{\left|T_{22 \rightarrow 11}\right|^{2}}{2 \sqrt{s\left(s-4 m_{1}^{2}\right)}}
$$

Extended Unitarity

Analyticity:

\mathbb{Z}_{2} symmetry : $\quad-\quad+$
s

Unitarity: $\left|S_{22 \rightarrow 11}\right|^{2}+\left|S_{22 \rightarrow 22}\right|^{2} \leq 1$ $s \geq 4 m_{2}^{2}$

Extended Unitarity:

$$
4 m_{1}^{2} \leq s \leq 4 m_{2}^{2}
$$

$$
2 \operatorname{Im} T_{22 \rightarrow 22}=\frac{\left|T_{22 \rightarrow 11}\right|^{2}}{2 \sqrt{s\left(s-4 m_{1}^{2}\right)}}
$$

3-state Potts model saturates the bound for $m_{2}=m_{1}$ and $\frac{g_{222}}{g_{112}}=-1$

Open questions

Future work

- Anomalous thresholds (Landau diagrams)
- Particles with spin (internal and external)
- Particles with flavour (global symmetries)
- Use analyticity beyond the physical sheet
- Connect with conformal bootstrap for D>2
- Other interesting questions? Maximize particle production? Resonances?
- Can we input UV data about the QFT? Hard scattering? Form factors?

Thank you!

S-matrix from the Conformal Bootstrap

QFT in AdS

Correlation functions of boundary operators

$$
\langle\mathcal{O}(x) \ldots\rangle=\lim _{z \rightarrow 0} z^{-\Delta} \ldots\langle\phi(z, x) \ldots\rangle
$$

bulk operator

QFT in AdS

Correlation functions of boundary operators

$$
\langle\mathcal{O}(x) \ldots\rangle=\lim _{z \rightarrow 0} z^{-\Delta} \ldots\langle\phi(z, x) \ldots\rangle
$$

bulk operator
Isometry group of AdS = SO (d+I,I) = Conformal group

QFT in AdS

$$
\begin{aligned}
& z=e^{\tau} \cos \rho \\
& r=e^{\tau} \sin \rho
\end{aligned}
$$

Correlation functions of boundary operators

$$
\langle\mathcal{O}(x) \ldots\rangle=\lim _{z \rightarrow 0} z^{-\Delta} \ldots\langle\phi(z, x) \ldots\rangle
$$

bulk operator
Isometry group of AdS = SO(d+I,I) = Conformal group
Convergent OPE for boundary operators

QFT in AdS

$$
\begin{aligned}
& z=e^{\tau} \cos \rho \\
& r=e^{\tau} \sin \rho
\end{aligned}
$$

Correlation functions of boundary operators

$$
\langle\mathcal{O}(x) \ldots\rangle=\lim _{z \rightarrow 0} z^{-\Delta} \ldots\langle\phi(z, x) \ldots\rangle
$$

Isometry group of AdS = SO(d+I,I) = Conformal group
Convergent OPE for boundary operators
\Rightarrow Use conformal bootstrap to study $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle$

Flat space limit of AdS

AdS radius $R \rightarrow \infty$

Flat space limit of AdS

AdS radius $R \rightarrow \infty$
Mass spectrum:
$\Delta_{i} \sim m_{i} R$

$$
\frac{m_{i}}{m_{1}}=\lim _{\Delta_{i} \rightarrow \infty} \frac{\Delta_{i}}{\Delta_{1}}
$$

Flat space limit of AdS

AdS radius $R \rightarrow \infty$
Mass spectrum:

$$
\Delta_{i} \sim m_{i} R
$$

$$
\frac{m_{i}}{m_{1}}=\lim _{\Delta_{i} \rightarrow \infty} \frac{\Delta_{i}}{\Delta_{1}}
$$

Cubic couplings:

$$
g_{123}=\lim _{\Delta_{i} \rightarrow \infty} \lambda_{123} \times \frac{2\left(\Delta_{1}\right)^{\frac{d-5}{2}}}{\pi^{\frac{d}{2}} \Gamma\left(\frac{1}{2} \sum_{i=1}^{3} \Delta_{i}-\frac{d}{2}\right)} \prod_{i=1}^{3} \frac{\Gamma\left(\Delta_{i}\right)}{\Gamma\left(\frac{1}{2} \sum_{i=1}^{3} \Delta_{i}-\Delta_{i}\right) \sqrt{\mathcal{C}_{\Delta_{i}}}} .
$$

Flat space limit of AdS

AdS radius $R \rightarrow \infty$
Mass spectrum:

$$
\Delta_{i} \sim m_{i} R
$$

$$
\frac{m_{i}}{m_{1}}=\lim _{\Delta_{i} \rightarrow \infty} \frac{\Delta_{i}}{\Delta_{1}}
$$

Cubic couplings:
OPE coefficient

$$
g_{123}=\lim _{\Delta_{i} \rightarrow \infty} \lambda_{123} \times \frac{2\left(\Delta_{1}\right)^{\frac{d-5}{2}}}{\pi^{\frac{d}{2}} \Gamma\left(\frac{1}{2} \sum_{i=1}^{3} \Delta_{i}-\frac{d}{2}\right)} \prod_{i=1}^{3} \frac{\Gamma\left(\Delta_{i}\right)}{\Gamma\left(\frac{1}{2} \sum_{i=1}^{3} \Delta_{i}-\Delta_{i}\right) \sqrt{C_{\Delta_{i}}}} .
$$

Scattering amplitudes:
Mellin amplitude

$$
\left(m_{1}\right)^{a} T\left(k_{i}\right)=\lim _{\Delta_{i} \rightarrow \infty} \frac{\left(\Delta_{1}\right)^{a}}{\mathcal{N}} M\left(\gamma_{i j}=\frac{\Delta_{i} \Delta_{j}}{\Delta_{1}+\cdots+\Delta_{n}}\left(1+\frac{k_{i} \cdot k_{j}}{m_{i} m_{j}}\right)\right)
$$

$$
a=n(d-1) / 2-d-1
$$

$$
\mathcal{N}=\frac{1}{2} \pi^{\frac{d}{2}} \Gamma\left(\frac{\sum \Delta_{i}-d}{2}\right) \prod_{i=1}^{n} \frac{\sqrt{\mathcal{C}_{\Delta_{i}}}}{\Gamma\left(\Delta_{i}\right)},
$$

$$
\mathcal{C}_{\Delta} \equiv \frac{\Gamma(\Delta)}{2 \pi^{\frac{d}{2}} \Gamma\left(\Delta-\frac{d}{2}+1\right)} .
$$

Numerical Conformal Bootstrap

$\mathcal{O}_{1} \times \mathcal{O}_{1}=1+\lambda_{112} \mathcal{O}_{2}+\ldots\left(\right.$ operators with $\left.\Delta>2 \Delta_{1}\right) \ldots$

Numerical Conformal Bootstrap

$\mathcal{O}_{1} \times \mathcal{O}_{1}=1+\lambda_{112} \mathcal{O}_{2}+\ldots\left(\right.$ operators with $\left.\Delta>2 \Delta_{1}\right) \ldots$
$\left\langle\mathcal{O}_{1}(0) \mathcal{O}_{1}(z) \mathcal{O}_{1}(1) \mathcal{O}_{1}(\infty)\right\rangle=\frac{1}{z^{2 \Delta_{1}}} \sum_{k} \lambda_{11 k}^{2} G_{\Delta_{k}}(z)$

Numerical Conformal Bootstrap

$\mathcal{O}_{1} \times \mathcal{O}_{1}=1+\lambda_{112} \mathcal{O}_{2}+\ldots\left(\right.$ operators with $\left.\Delta>2 \Delta_{1}\right) \ldots$
$\left\langle\mathcal{O}_{1}(0) \mathcal{O}_{1}(z) \mathcal{O}_{1}(1) \mathcal{O}_{1}(\infty)\right\rangle=\frac{1}{z^{2 \Delta_{1}}} \sum_{k} \lambda_{11 k}^{2} G_{\Delta_{k}}(z) \quad \begin{aligned} & \text { conformal block } \\ & G_{\Delta_{k}}(z):=z^{\Delta_{k}} F_{1}\left(\Delta_{k}, \Delta_{k}, 2 \Delta_{k}, z\right)\end{aligned}$

Numerical Conformal Bootstrap

$\mathcal{O}_{1} \times \mathcal{O}_{1}=1+\lambda_{112} \mathcal{O}_{2}+\ldots$ (operators with $\left.\Delta>2 \Delta_{1}\right) \ldots$
$\left\langle\mathcal{O}_{1}(0) \mathcal{O}_{1}(z) \mathcal{O}_{1}(1) \mathcal{O}_{1}(\infty)\right\rangle=\frac{1}{z^{2 \Delta_{1}}} \sum_{k} \lambda_{11 k}^{2} G_{\Delta_{k}}(z) \quad \begin{aligned} & \text { conformal block } \\ & G_{\Delta_{k}}(z):=z^{\Delta_{k}} F_{1}\left(\Delta_{k}, \Delta_{k}, 2 \Delta_{k}, z\right)\end{aligned}$

Extrapolation ${ }^{2}$

Extrapolation ${ }^{2}$

2D Conformal bootstrap - preliminary

2D Conformal bootstrap - preliminary

RG flows from QFT in AdS

