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Introduction and motivations

The hadronic spectrum of QCD can be studied using the Lattice regularization and
Montecarlo simulations.

The key ingredient is the evaluation of the interquark potential using Polyakov Loop
correlators.

In the limit of infinite mass quarks (i.e. approximating QCD with a pure Lattice
Gauge Theory) these correlators can be studied with two powerful effective models:
Conformal Perturbation and Effective String Models. Within their range of validity
these effective models agree very well with high precision Montecarlo Simulations.

Using these effective theories one can see that besides the standard hadronic states
non Abelian Lattice Gauge Theories (LGTs) have a rich spectrum of non trivial
excited/bound states with a highly non-trivial temperature dependence.

This finding is confirmed by high precision montecarlo simulations in different
models (SU(N) LGTs both in 2+1 and 3+1 dimensions) and different regimes (both
low T and high T)
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Lattice determination of the interquark potential.

In pure lattice gauge theories at Finite Temperature the interquark potential is extracted
from Polyakov loop correlators < P(0)P(R)† >

< P(0)P(R)† > ∼
∞∑
n=0

cn e−LEn

where L is the inverse temperature, i.e. the length of the lattice in the compactified
imaginary time direction.
At low temperature the potential is dominated by the ground state energy E0

E0 = V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Polyakov loop correlator.

Expectation value of two Polyakov loops at distance R and Temperature T = 1/L
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V (R) = − lim
L→∞

1
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log< P(0)P(R)† >
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Montecarlo Simulations

Can we test if there are excited states using Montecarlo Simulations?
Which is their energy? Is there a dependence on the finite temperature T?

A direct search of subleading exponentials in the Polyakov loop correlator is difficult due
to the presence of the ground state.

There are two possible ways to address the problem

Construct a basis of lattice operators (generalizations of Polyakov loops with
different shapes) and evaluate the matrix of cross-correlations. The eigenvalues of
this matrix are the En energy states that we are looking for1.

This strategy is very effective but very intensive from a computational point of view
and at the moment out of reach for real QCD simulations.

A much simpler and economic way to address this issue is to study the ξ/ξ2nd ratio2

1Brandt, B.B. J. High Energ. Phys. (2017) 2017: 8. arXiv:1705.03828
2M. Caselle, A. Nada, Phys. Rev. D 96, 074503 (2017), arXiv:1707.02164
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ξ versus ξ2nd in spin models

In a d-dimensional spin model the exponential correlation length ξ describes the long
distance behavior of the connected two point function.

1

ξ
= − lim

|~n|→∞

1

|~n| log〈s~0s~n〉c .

where
〈s~ms~n〉c = 〈s~ms~n〉 − 〈s~m〉2

The square of the second moment correlation length ξ2nd is defined as:

ξ2
2nd =

µ2

2dµ0
,

where

µ0 = lim
L→∞

1

V

∑
~m,~n

〈s~ms~n〉c

and

µ2 = lim
L→∞

1

V

∑
~m,~n

|~m − ~n|2〈s~m s~n〉c ,

where V = Ld is the lattice volume.
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ξ versus ξ2nd in spin models

ξ2nd is not exactly equivalent to ξ. The difference is in general very small, but it carries
important information on the spectrum of the underlying theory.

The relation between ξ and ξ2nd can be understood introducing the “time slice” variables

Sn0 =
1

L2

∑
n1,n2

s(n0,n1,n2)

and the “time-slice” correlation function

G(τ) =
∑
n0

{
〈Sn0Sn0+τ 〉 − 〈Sn0〉

2
}
.

whose large distance behaviour is controlled by ξ

G(τ) ∼ exp(−τ/ξ) .
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ξ versus ξ2nd in spin models

Using time slice variables, µ2 and µ0 can be rewritten as:

µ2 =
d

V

∑
~m,~n

(n0 −m0)2 〈s~m s~n〉c .

i.e.

µ2 = dL2
∞∑

τ=−∞

τ 2 〈S0 Sτ 〉c

and

µ0 = L2
∞∑

τ=−∞

〈S0 Sτ 〉c .

From which we have

ξ2
2nd =

∑∞
τ=−∞ τ 2 G(τ)

2
∑∞
τ=−∞ G(τ)

.
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ξ versus ξ2nd in spin models

Assuming a multiple exponential decay for G(τ),

〈S0 Sτ 〉c ∝
∑
i

ci exp(−|τ |/ξi ) ,

and replacing the summation by an integration over τ we get

ξ2
2nd =

1

2

∫∞
τ=0

dτ τ 2∑
i ci exp(−τ/ξi )∫∞

τ=0
dτ
∑

i ci exp(−τ/ξi )
=

∑
i ciξ

3
i∑

i ciξi
,

which is equal to ξ2 if only one state contributes. It is thus clear that we can use the
ξ/ξ2nd to have some insight on the spectrum of the theory and on the amplitude ci of
these states.
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Example: the Ising case

d ξ/ξ2nd Method

High T phase 2 1.00040...
3 1.00016(2) strong-coupling + ε-expansion 1

3 1.00021(3) perturbative d = 3 calculation2

3 1.000200(3) strong-coupling expansion 1

Low T phase 2 1.58188...
3 1.031(6) Monte Carlo simulations3

3 1.032(4) strong-coupling expansion 1

critical isotherm 2 1.07868...
(t = 0, |H| 6= 0) 3 1.024(4) strong-coupling + ε-expansion 1

Table : Values of the ξ/ξ2nd ratio for an Ising spin system in three different conditions: in the
high-temperature symmetric phase, in the low-temperature broken symmetry phase and along the
critical isotherm.

1M. Campostrini et al. Phys. Rev.E60 (1999) 3526-3563 cond-mat/9905078
2M. Campostrini et al. Phys. Rev.E57 (1998) 184-210 cond-mat/9705086
3M. Caselle et al. Nucl. Phys. B556 (1999) 575-600 hep-lat/9903011
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These values have a natural interpretation:

In the high-T symmetric phase, where the spectrum is composed by a single massive
state, we would expect that ξ/ξ2nd = 1: the small but not negligible difference from
1 is due to the cut above the pair production threshold at momentum p equal twice
the lowest mass.

In the low-T broken symemtry phase in d = 3 the spectrum is more complex, most
likely it is composed by an infinite tower of bound states and one of them lies below
the two particles threshold: mbound = 1.83(3)mph and in fact ξ/ξ2nd ∼ 1.03

In the d = 2, T = Tc , H 6= 0 thanks to the exact solution S-matrix solution of
Zamolodchikov we know that there are three particles in the spectrum below the
two-particle threshold and accordingly we find ξ

ξ2nd
= 1.07868...

Finally, in the d = 2, low-T case, the Fourier transform of the correlators starts with
a cut whcih can be shown to be due to the coalescence of an infinite number of
states. Accordingly we find ξ

ξ2nd
= 1.58188...
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The d = 3 + 1 SU(2) LGT

To test the behaviour of ξ/ξ2nd in Lattice Gauge Theories we performed a set of
simulations in the d = 3 + 1 SU(2) model 1 looking at correlators of Polyakov loops in
the confined phase: the temperature T = 1/(a(β)Nt) is varied using the inverse coupling
β and the temporal extent Nt .
Here are a few info on the simulations

β N3
s × Nt T/Tc nconf

2.27 323 × 6 0.59 4.5× 105

2.33 323 × 6 0.71 2.25× 105

2.3 323 × 5 0.78 5.5× 105

2.357 323 × 6 0.78 2.25× 105

2.25 643 × 4 0.84 3× 104

2.4 643 × 6 0.90 2× 104

1M. Caselle, A. Nada, Phys. Rev. D 96, 074503 (2017), arXiv:1707.02164
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The d = 3 + 1 SU(2) LGT

Results:

T/Tc L ξ/a ξ2nd/a
ξ
ξ2nd

0.59 32 1.31(2) 0.887(8) 1.48(3)
0.71 32 2.31(4) 1.842(15) 1.25(2)
0.78 32 2.56(2) 2.22(1) 1.153(11)
0.78 32 3.08(4) 2.67(2) 1.151(16)
0.84 64 3.05(6) 2.74(4) 1.11(3)
0.90 64 6.9(2) 6.6(3) 1.04(6)

Michele Caselle (UniTo) Bound states GGI 14/03/2018 14 / 36



The d = 3 + 1 SU(2) LGT
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The d = 3 + 1 SU(2) LGT

We see two main features

for T/Tc → 1 ξ/ξ2nd is very close to 1.
Same as what happens in the high-T phase of the 3d Ising model, in agreement
with Svetitsky-Yaffe conjecture

ξ/ξ2nd increases dramatically as T/Tc decreases.
This increase suggests that as T/Tc decreases the states of the spectrum coalesce
toward the ground state, exactly as it happens in the d = 2 Ising model below Tc ;

A very useful tool to understand both these features is the effective string description of
the Polyakov loop correlators which indeed predicts, as a consequence of the “string”
nature of the color flux tube, a rich spectrum of excitations.

This effective model will allow us to have a quantitative estimate of the energy of these
excited states and of their T dependence.
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Effective string action

Confinement is usually associated to the creation (via a mechanism which still has to be
understood) of a thin flux tube joining the quark antiquark pair. (Nielsen-Olesen, ’t
Hooft, Wilson, Polyakov, Nambu ....).
If we accept this picture we cannot neglect quantum fluctuations of this flux tube. The
area law is thus only the classical contribution to the interquark potential and we should
expect quantum corrections to its form. The theory which describes these quantum
fluctuations is known as ”effective string theory”.
The simplest choice for the effective string action is to describe the quantum fluctuations
of the flux tube as free massless bosonic degrees of freedom

S = Scl +
σ

2

∫
d2ξ [∂αX · ∂αX ] ,

where:

Scl describes the usual (”classical”) area-perimeter term.

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the surface
of minimal area representing the configuration around which we expand

ξ0, ξ1 are the world-sheet coordinates.
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The Lüscher term.

The first quantum correction to the interquark potential is obtained summing over
all the possible string configuration compatible with the Polyakov loop correlator
(i.e. with Dirichlet boundary conditions along the Polyakov loops and periodic b.c in
the compactified ”temperature” direction).

This is equivalent to the sum over all the possible surfaces borderd by the Polyakov
loops i.e. to the partition function

<W (R,T ) >=

∫
e−σRT−

σ
2

∫
d2ξX i (−∂2)X i

The functional integration is a trivial gaussian integral, the result is

V (R) = σR − (d − 2)π

24R
+ c

This quantum correction is known as ”Lüscher term” and is universal i.e. it does not
depend on the ultraviolet details of the gauge theory but only on the geometric
properties of the flux tube.
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The Lüscher term.

This correction is in remarkable agreement with numerical simulations. First high
precision test in d=4 SU(3) LGT more than fifteen years ago. 1

Figure : The static potential. The dashed line represents the bosonic string model and the solid line the
prediction of perturbation theory.

1S. Necco and R. Sommer, Nucl.Phys. B622 (2002) 328
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The Lüscher term.
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Figure : The force in the continuum limit and for finite resolution, where the discretization errors are
estimated to be smaller than the statistical errors. The full line is the perturbative prediction. The dashed
curve corresponds to the bosonic string model normalized by r2

0 F (r0) = 1.65.
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The Nambu-Goto action.

Evaluation of higher order quantum corrections requires further hypothesis on the
nature of the flux tube. The simplest choice is the Nambu-Goto string in which
quantum corrections are evaluated summing over all the possible surfaces bordered
by the two Polyakov loops with a weight proportional to their area.

S = σ

∫
d2ξ
√

det(ηαβ + ∂αX · ∂βX )

∼ σRL +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Interquark potential for the Nambu-Goto action.

The Nambu-Gotō action is simple enough to be exactly solvable. The large distance
expansion of the Polyakov loop correlator in D space-time dimensions is1:

〈P(x)∗P(y)〉 =
∞∑
n=0

wn
2rσL

En

(π
σ

) 1
2

(D−2)
(

En

2πr

) 1
2

(D−1)

K 1
2

(D−3)(Enr)

where r = |y − x | is the interquark distance, wn denotes the multiplicity of the state, L
the size of the lattice in the compactified time direction and En the closed-string energies
which are given by

En = σL

√
1 +

8π

σL2

[
− 1

24
(D − 2) + n

]
.

In the D = 3 + 1 case, thanks to the identity K 1
2
(z) =

√
π
2z
e−z we have:

〈P(x)∗P(y)〉 =
∞∑
n=0

L

2r
wne

−Enr

which represents a collection of free particles of mass En.

1M. Lüscher and P. Weisz, JHEP 07 (2004) 014 hep-th/0406205
M. Billó and M. Caselle, JHEP 07 (2005) 038, hep-th/0505201
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Interquark potential for the Nambu-Goto action.
In the large r limit the interquark potential is dominated by the lowest state which can be
interpreted as a temperature dependent string tension

E0

L
= σ(T ) = σ

√
1− π

3σL2
= σ

√
1− πT 2

3σ
.

Performing an ”open-closed string” transformation one can rewrite the energies in a
form amenable for a low temperature expansion

Ẽn(R) =

√
σ2R2 + 2πσ

(
n − D − 2

24

)
where Ẽn denotes the ”dual” energy levels

In particular Ẽ0(R) corresponds to the interquark potential

V (R) = Ẽ0(R) =

√
σ2R2 − 2πσ

D − 2

24
,

V (R) ∼ σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

+ O(1/R5) ,

Michele Caselle (UniTo) Bound states GGI 14/03/2018 23 / 36



Effective string description: fixing T/Tc

In the framework of the Nambu-Gotō approximation one can also derive an estimate of
the critical temperature Tc measured in units of the square root of the string tension

√
σ

Tc√
σ

=

√
3

π(D − 2)

given by the value of the ratio Tc√
σ

for which the lowest mass E0 vanishes. We can thus

rewrite the energy levels as a function of T/Tc ; setting D = 3 + 1 we find

En =
2πT 2

c

3T

{
1 + 12

T 2

T 2
c

[
n − 1

12

]}1/2

.

The gap between the different states, decreases as T/Tc decreases and all the states
tend to accumulate toward the lowest state!

It is exactly this behaviour which leads in the other string channel to the appearence of
the 1/R Lüscher term in the potential.
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Comparison with the effective string description
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Figure : (En − E0)/E0 as a function of T/Tc for the first ten states. The black horizontal line
represents the two particle threshold.
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How much of this picture survives in real QCD?

Maybe more than what we expect.

Greensite and Hollwieser1 studied the ξ/ξ2nd ratio in an Effective Polyakov Loop
action with long range couplings, derived using the relative weights method on a
SU(3) gauge theory with dynamical staggered fermions of mass 695 MeV.

They found ξ/ξ2nd = 1.27(3) which is indeed compatible with a rich string-like
spectrum

1J. Greensite, R. Hollwieser (2017), arXiv:1708.08031
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Bound states in the deconfined phase and conformal perturbation

Renormalization Group arguments (the ”Svetitsky-Yaffe conjecture”) suggest that
the deconfinement transition of a SU(N) LGT in d + 1 dimensions belongs to the
same universality class of the magnetization transition of a spin model in d
dimension with symmetry group ZN .

In this framework the Polyakov loop is mapped into the spin and the deconfined
phase of the LGT is mapped into the broken symmetry phase (low T) of the spin
model.

Since the low T phase of ZN spin models is characterized by a rich spectrum of
bound states we expect the same spectrum content also in the deconfined phase of a
LGT, at least in the scaling region near the deconfinement point,
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Bound states in the deconfined phase and conformal perturbation

To test this picture we focused on the 3 + 1 SU(2) LGT and performed a two steps
analysis

We studied the short distance behaviour of the two point function in the scaling
region using conformal perturbation in order to find the signatures of this bound
state

We performed a set of high precision simulations in the 3 + 1 SU(2) model looking
for the same signatures.

Michele Caselle (UniTo) Bound states GGI 14/03/2018 28 / 36



Thermal Perturbation Theory: the 3d Ising Model1

In the Ising case we have only two relevant operators σ and ε, with scaling dimensions
∆σ = 0.5181489(10) and ∆ε = 1.412625(10).
We find for the first three orders of perturbed two-point function of σ:

〈σ(r)σ(0)〉t = C 1
σσ(0, r) + C εσσ(0, r)〈ε〉t + t∂tC

1
σσ(0, r) + ...

To make contact with the usual definition for the structure constants we factorize the r
dependence in the Wilson coefficients:

C 1
σσ(0, r) =

1

r 2∆σ
, C εσσ(0, r) = C εσσr

∆ε−2∆σ

where we have chosen the usual normalization C 1
σσ = 1 .

Defining ∆t = 3−∆ε, the perturbed one-point functions is:

〈ε〉t = A±|t|
∆ε
∆t

Where A± are non-universal amplitudes. Introducing the scaling variable s = tr∆t we end
up with the following expression for the perturbed two-point function:

r 2∆σ 〈σ(r)σ(0)〉t = 1 + C εσσA
±|s|

∆ε
∆t + t∂tC

1
σσ(0, r) + ...

1M. Caselle, G. Costagliola, N. Magnoli, Phys. Rev. D 94, 026005 (2016), arXiv:1605.0513
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Thermal Perturbation Theory: Results for the 3d Ising Model.

Inserting the known values of the structure constants, of their derivatives and of A± for
the 3d Ising model we end up with:

r 2∆σ 〈σ(r)σ(0)〉t = 1− 51.2(3)|s|
∆ε
∆t + 65.7762..s (t > 0) + ...

r 2∆σ 〈σ(r)σ(0)〉t = 1 + 95.6(6)|s|
∆ε
∆t + 65.7762..s (t < 0) + ...

Notice that:

The second and the third term are of the same size for t > 0 and almost cancel,
while this is not true for t < 0 thus the behaviour is completely different in the
t > 0 and t < 0 cases.

The presence of a bound state only in the t < 0 phase can be traced back to this
different behaviour.
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Comparison with Montecarlo Simulations of the 3d Ising Model

Simulations with a standard Metropolis updating with multispin coding on a cubic lattice
of size L = 300 with periodic boundary condition.
tlat ≡ βc − β with βc = 0.22165462
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Comparison with Montecarlo Simulations of the 3 + 1 SU(2) LGT1

β N3
s × Nt T/Tc nconf ξ

2.55 10× 803 0.90 105 ∼ 11
2.569 10× 803 0.96 105 ∼ 28
2.572 10× 803 0.97 105 ∼ 55

2.58101 10× 803 1 105

2.58984 10× 803 1.02 105 ∼ 30
2.59271 10× 803 1.05 105 ∼ 25

2.61 10× 803 1.10 105 ∼ 15

Table : Setup of the lattice simulations performed for the SU(2) gauge theory.

β T/Tc Rmax ξ a b
2.55 0.90 [7− 8] ∼ 11 -0.169(1) 0.099(1)

2.569 0.96 [11− 14] ∼ 28 -0.067(2) 0.037(1)
2.572 0.97 [12− 21] ∼ 55 -0.048(3) 0.026(2)

2.58984 1.02 [25− 30] ∼ 30 0.071(1) - 0.022(1)
2.59271 1.05 [20− 25] ∼ 25 0.089(2) - 0.023(2)

2.61 1.05 [10− 15] ∼ 15 0.230(10) - 0.085(8)

Table : Results for the two coefficents of the conformal perturbation expansion.

1M. Caselle, N. Magnoli, A. Nada, M. Panero and M. Scanavino, in preparation
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Comparison with Montecarlo Simulations of the 3 + 1 SU(2) LGT1
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Conclusions

The ξ/ξ2nd is a simple and ”easy to evaluate” observable to test existing proposal
for Effective Polyakov loop actions

In d = 3 + 1 SU(2) LGT we find values of the ratio larger and larger as the
temperature decreases.

These values have a natural interpretation in terms of effective string description of
the Polyakov loop correlators. They are due to the presence of an infinite number of
excited states in the spectrum, which become denser and denser as T decreases and
to the exponential increase of the weights.

Using conformal perturbation and Montecarlo simulations we find evidences of a
bound state in the high T deconfiend phase of the (3 + 1) SU(2) LGT.
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Columbia Plot
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