Large scale separation from mass-split models

Anna Hasenfratz

Workshop on Bound states in strongly coupled systems Galileo Institute, Florence March 14 2018 Non-perturbative investigations of Composite Higgs BSM systems exhibiting

Large scale separation from mass-split models

Anna Hasenfratz

Workshop on Bound states in strongly coupled systems Galileo Institute, Florence March 14 2018 Non-perturbative investigations of Composite Higgs BSM systems exhibiting Large scale separation from mass-split models

This is Part 1: Set the stage - (theoretical) introduction Next talk Part 2: O. Witzel - much more details

Mostly based on R. Brower, A.H., Claudi Rebbi, E. Weinberg, Oliver Witzel, Phys.Rev. D93 (2016) 075028 A.H., Claudi Rebbi, Oliver Witzel, Phys.Let. B773 (2017) 86

Beyond QCD :

it's a wild world out there ...

At fixed N_c :

- small N_f : chirally broken, QCD-like
- $N_f^* < N_f < N_f^{(|F|)}$: conformal
- $N_f^{(|F|)} < N_f$: IR free

Beyond QCD :

it's a wild world out there ...

At fixed N_c :

- small N_f : chirally broken, QCD-like
- $N_f^* < N_f < N_f^{(|F|)}$: conformal
- $N_f^{(|F|)} < N_f$: IR free

are the basis of most composite Higgs models

Start with Higgsless, massless SM \longrightarrow Full SM

 \mathcal{L}_{SM0} $\rightarrow \mathcal{L}_{SM}$

are the basis of most composite Higgs models

Start with Higgsless, massless SM \rightarrow Full SM

$$\mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} \rightarrow \mathcal{L}_{SM} + \dots$$

$$f \\ Full SM + additional \\ states from \\ strong dynamics \mathcal{L}_{SD}$$

are the basis of most composite Higgs models

Start with Higgsless, massless SM \longrightarrow Full SM

states from

strong dynamics \mathcal{L}_{sn}

The construction ideally will

- predict the 125GeV Higgs
- give mass to the SM gauge fields
- give mass to the SM fermions : (4-fermion interaction or partial compositness?)
- give mass to \mathcal{L}_{SD} fermions: \mathcal{L}_{UV} sector

are the basis of most composite Higgs models

Start with Higgsless, massless SM \longrightarrow Full SM

$$\begin{array}{cccc} \mathcal{L}_{UV} & \rightarrow & \mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} & \rightarrow & \mathcal{L}_{SM} + \dots \\ & \uparrow & & \uparrow \\ \text{This could be a UV} \\ \text{complete theory} & & & \text{states from} \\ \text{strong dynamics } \mathcal{L}_{SD} \end{array}$$

The construction ideally will

Т

- predict the 125GeV Higgs
- give mass to the SM gauge fields
- give mass to the SM fermions : (4-fermion interaction or partial compositness?)
- give mass to \mathcal{L}_{SD} fermions: \mathcal{L}_{UV} sector

 \mathcal{L}_{SD} :SU(N_c) gauge, N_f fermions, chirally broken, coupled to the SM

- EW symmetry breaking : emerges from massless pions of \mathcal{L}_{SD}
- Higgs sector : what keeps the Higgs light ?
 - Two scenarios:

 \mathcal{L}_{SD} :SU(N_c) gauge, N_f fermions, chirally broken, coupled to the SM

- EW symmetry breaking : emerges from massless pions of \mathcal{L}_{SD}
- Higgs sector : what keeps the Higgs light ?
 - Two scenarios:

Dilaton-like Higgs:

just below the conformal window: broken conformal symmetry leads to light 0++ scalar

 \mathcal{L}_{SD} :SU(N_c) gauge, N_f fermions, chirally broken, coupled to the SM

- EW symmetry breaking : emerges from massless pions of \mathcal{L}_{SD}
- Higgs sector : what keeps the Higgs light ?
 - Two scenarios:

Dilaton-like Higgs:

just below the conformal window: broken conformal symmetry leads to light 0++ scalar Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB: naturally light; its mass emerges from interactions

 \mathcal{L}_{SD} :SU(N_c) gauge, N_f fermions, chirally broken, coupled to the SM

- EW symmetry breaking : emerges from massless pions of \mathcal{L}_{SD}
- Higgs sector : what keeps the Higgs light ?
 - Two scenarios:

Dilaton-like Higgs:

just below the conformal window: broken conformal symmetry leads to light 0++ scalar Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB: naturally light; its mass emerges from interactions

No experimental sign of either scenario (yet): \rightarrow plausible BSM scenarios require (very) large scale separation between \mathcal{L}_{SD} and \mathcal{L}_{SM}

$$\mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} \rightarrow \mathcal{L}_{SM} + \dots$$

Large scale separation

- is natural if the model is built near a conformal IRFP

Large scale separation

- is natural if the model is built near a conformal IRFP

"Foolproof" realization:

- Take $N_{\mbox{\scriptsize f}}$ above the conformal window
 - Split the masses: $N_f = N_{\ell} + N_h$

 N_h flavors are massive, $m_\ell \ll m_h \ll \Lambda_{cut-off} \rightarrow decouple in the IR$

 N_{ℓ} (= 2 - 4) flavors are massless, $m_{\ell} = 0 \rightarrow$ spont. chirally broken

A mass-split model

- shows conformal properties in the UV
- chirally broken in the IR
- large scale separation controlled by m_h

Phase diagram of mass-split model

Mass-split model, N_{ℓ} (=4) + N_{h} (=8) ; m_{ℓ} = 0:

N_ℓ flavors - chirally broken m_{h} $N_{\ell} + N_h$ flavors - Conformal $\beta \propto 1/g^2$

Phase diagram of mass-split model

Mass-split model, N_{ℓ} (=4) + N_{h} (=8) ; m_{ℓ} = 0:

Phase diagram of mass-split model

```
Mass-split model, N_{\ell} (=4) + N_{h} (=8) ; m_{\ell} = 0:
```


Wilson RG for mass-split models

Use Wilson RG description in conformal systems:

- start with bare parameters at the UV scale
- run RG from $\Lambda_{\text{cut-off}}$ to low energy μ
- continuum (infinite cut-off) system: tune bare couplings to criticality while keeping µ fixed

- RG flow runs toward the IRFP, lingers around, then flows along RT
- IR physics is along the RT

Wilson RG for mass-split models

Use Wilson RG description in conformal systems:

- start with bare parameters at the UV scale
- run RG from $\Lambda_{\text{cut-off}}$ to low energy μ
- continuum (infinite cut-off) system: tune bare couplings to criticality while keeping µ fixed

Wilson RG for mass-split models

Use Wilson RG description in conformal systems:

- start with bare parameters at the UV scale
- run RG from $\Lambda_{\text{cut-off}}$ to low energy μ
- continuum (infinite cut-off) system: tune bare couplings to criticality while keeping µ fixed

Running/walking coupling

RG flows predict the running coupling:

3 regions:

• UV :

from cut-off to $g \sim g^*$

- walking: m_h small, g~g*
- IR : heavy flavors decouple, N_l light flavors are chirally broken

walking can be tuned by $m_h \rightarrow 0$

Running/walking coupling

RG flows predict the running coupling:

3 regions:

• UV :

from cut-off to $g \sim g^*$

- walking: m_h small, g~g*
- IR : heavy flavors decouple, N_l light flavors are chirally broken

walking can be tuned by $m_h \rightarrow 0$

Example: $4\ell + 8h$

Walking range can be tuned arbitrarily with m_h

N_f=4 : running fast

Example: $4\ell + 8h$

Walking range can be tuned arbitrarily with m_h

N_f=4 : running fast

Example: $4\ell + 8h$

Walking range can be tuned arbitrarily with m_h

N_f=4 : running fast

The only free parameter is m_h :

- sets the lattice scale (like g² in QCD)
- tune it with go to control scale separation/walking

Hyperscaling around IRFP restricts the spectrum

In conformal systems Wilson RG predicts hyperscaling in the basin of attraction of the fixed point

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

> $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

and any 2-point correlation function scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

since

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

where $F_H(m_{\ell}/m_h)$ is a universal function depending on H

In conformal systems Wilson RG predicts hyperscaling in the basin of attraction of the fixed point

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

> $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

and any 2-point correlation function scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$= b^{-2y_H} C_H(t/b;g^*, b^{y_m} \hat{m}_h, \hat{m}_\ell/\hat{m}_h, \mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)^{1/y_m}$$

since

where $F_H(m_{\ell}/m_h)$ is a universal function depending on H

In conformal systems Wilson RG predicts hyperscaling in the basin of attraction of the fixed point

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

> $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

and any 2-point correlation function scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*, b^{y_m} \hat{m}_h, \hat{m}_\ell/\hat{m}_h, \mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)^{1/y_m} F_H(m$$

where $F_H(m_{\ell}/m_h)$ is a universal function depending on H

Masses scale as

$$aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

Ratios are universal functions of m_{ℓ}/m_h

$$M_{H_1} / M_{H_2} = \Phi_H (m_\ell / m_h),$$

 $M_{H_1} / F_\pi = \tilde{\Phi}_H (m_\ell / m_h)$

In terms of F_{π} the spectrum is predictable - no free parameters

- in the $m_{\ell}=0$ chiral limit the spectrum is independent of m_h
- true for light-light, heavy-light and heavy-heavy spectrum

This is very different from QCD!

Masses scale as

$$aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell / m_h)$$

Ratios are universal functions of m_e/m_h

$$M_{H_1} / M_{H_2} = \Phi_H (m_{\ell} / m_h),$$

$$M_{H_1} / F_{\pi} = \tilde{\Phi}_H (m_{\ell} / m_h)$$

In terms of F_{π} the spectrum is predictable - no free parameters

- in the $m_{\ell}=0$ chiral limit the spectrum is independent of m_h
- true for light-light, heavy-light and heavy-heavy spectrum

This is very different from QCD!

Brief summary of mass-split systems:

• predictive like QCD:

- $\bullet m_h$ replaces g^2
- conformal FP replaces the Gaussian FP in the UV
- IR properties are not QCD like:
 - the bound state masses in physical units (like F_{π}) are independent of m_h when m_ℓ =0, even for heavy flavors
 - the anomalous dimensions in the UV are controlled by the conformal FP
 - walking can be tuned arbitrarily

Sample numerical results for $4\ell + 8h$

Light-light spectrum $(4\ell+8h)$

in terms of m_{ℓ}/m_h at $m_h = 0.05, 0.06, 0.08, 0.10$

- approaches N_f=12 as $m_{\ell}/m_{h} \rightarrow 1$: M_{H}/F_{π} ratios are finite
- universal in m_{ℓ}/m_h at various m_h

Light-light spectrum $(4\ell+8h)$

in terms of m_{ℓ}/m_h at $m_h = 0.05, 0.06, 0.08, 0.10$

- approaches $N_f{=}12$ as $m_\ell/m_\hbar \rightarrow 1$: $M_H/F_\pi~$ ratios are finite
- universal in m_{ℓ}/m_h at various m_h

Light-light spectrum $(4\ell+8h)$

in terms of m_{ℓ}/m_h at $m_h = 0.05, 0.06, 0.08, 0.10$

- approaches N_f=12 as $m_{\ell}/m_{h} \rightarrow 1$: M_{H}/F_{π} ratios are finite
- universal in m_{ℓ}/m_h at various m_h

Hyperscaling

Ratios depend on m_{ℓ}/m_h but not on m_{ℓ} , m_h or g^2

four different $m_h = 0.05 - 0.10$ on each panel

similar for other states

Compare to QCD

QCD: $m_{\ell} \rightarrow 0$, $m_{h} \rightarrow \infty$; not in the basin of attraction of the IRFP (no hyperscaling) —

Connected spectrum is mainly valence fermions

Compare to QCD

QCD: $m_{\ell} \rightarrow 0$, $m_{h} \rightarrow \infty$; not in the basin of attraction of the IRFP (no hyperscaling) —

Connected spectrum is mainly valence fermions

Brief summary:

Mass-split systems are

• predictive like QCD:

- m_h replaces g^2
- IRFP replaces the Gaussian FP in the UV
- IR properties are not QCD like:
 - the bound state masses in physical units (like F_{π}) are independent of m_h when m_ℓ =0, even for heavy flavors most dramatic difference see next talk
 - the anomalous dimensions in the UV are controlled by the conformal FP
 - walking can be tuned arbitrarily

Hyperscaling

Ratios depend on m_{ℓ}/m_h but not on m_{ℓ} , m_h or g^2

Phys.Let. B773 (2017) 86

