Tetraquarks, pentaquarks and the like Old and new views

G.C. Rossi

Dipartimento di Fisica - Università di Roma *Tor Vergata* INFN - Sezione di Roma *Tor Vergata* Centro Fermi - Roma

March 12, 2018

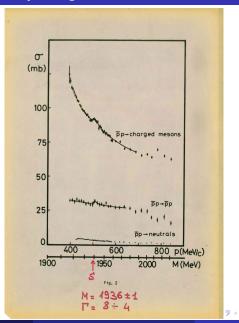
G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

March 12, 2018 1 / 48

Outline of the talk

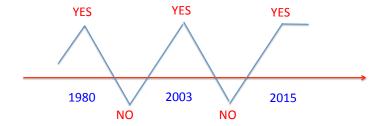
- Pre-history (from 1968 to 2003: hints for tetra- & penta-quarks)
 - Motivation & Background
 - Duality (Rosner, 1968)
 - $MM \rightarrow MM, MB \rightarrow MB, B\bar{B} \rightarrow B\bar{B}$
 - Large N-expansions
 - $1/N_c @ g^2 N_c = const$ ('t Hooft, 1973)
 - $1/N_f @ g^2 N_c = const$ and $N_f/N_c = const$ (Veneziano, 1975)
 - Experiments (1975 -1980 & around 2003)
 - LEAR S [$M \sim 1936$, $\Gamma \sim 4 8$ MeV] & other candidates
 - A theoretical picture emerged from QCD predicting
 - "hidden baryon number" states → Baryonium (Rossi, Veneziano, 1977)
- History (from 2003 to today)
 - More "stable" experimental data (after 2011)
 - A better understanding of Baryonium (Rossi, Veneziano, 2015)
 - Phenomenology of tetra-quarks, penta-quarks, (Yaffe, 1977 - Large number of papers ... 2004 - 2018)


* 3 * * 3 * 3

This talk is mainly based on

- G.C. Rossi and G. Veneziano, "A Possible Description of Baryon Dynamics in Dual and Gauge Theories," Nucl. Phys. B **123** (1977) 507.
- G.C. Rossi and G. Veneziano, "Electromagnetic Mixing of Narrow Baryonium States," Phys. Lett. **70B** (1977) 255.
- L. Montanet, G.C. Rossi and G. Veneziano, Phys. Rept. 63 (1980) 149.
- G.C. Rossi and G. Veneziano, "Isospin mixing of narrow pentaquark states," Phys. Lett. B **597** (2004) 338.
- G.C.Rossi and G. Veneziano, "The string-junction picture of multiquark states: an update," JHEP **1606** (2016) 041.
- The slides of my 1977 CERN seminar

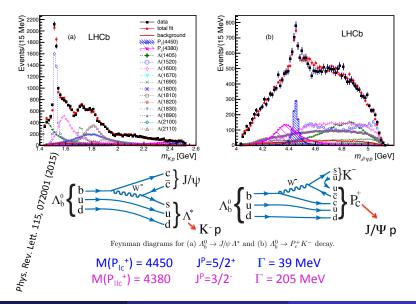
< ロ > < 同 > < 回 > < 回 >


From where everything starterd

G.C. Rossi (Tor Vergata)

March 12, 2018 4 / 48

-



4q's & 5q's discovery history

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

The experimental evidence for 5q's states

G.C. Rossi (Tor Vergata)

March 12, 2018 6 / 48

The emergence of **Baryonium**

- S-matrix approach
 - Duality in $MM \rightarrow MM, MB \rightarrow MB, B\bar{B} \rightarrow B\bar{B}$ amplitudes
 - Regge trajectories
 - Exchange degeneracy violation \rightarrow multi-quark states
- Field theoretical approach
 - The physically interesting limit of QCD is $g^2 \& \lambda = g^2 N_c$ small
 - More or less good control of the theory (see figure)
 - in perturbation theory: $g^2 \rightarrow 0 @ N_c$ fixed
 - in the 't Hooft limit: $1/N_c \rightarrow \infty @ \lambda = g^2 N_c$ fixed
 - in the strong coupling limit: $1/g^2 \rightarrow 0 @ N_c$ fixed (possibly large)
 - in the AdS/CFT limit: $1/N_c \rightarrow 0 @ \lambda$ fixed and large
 - As we shall see, "naturally"
 - mesons appear in the 't Hooft and strong coupling limit
 - baryons & baryonia in the strong coupling limit
 - The key question is: can we get to real physics?

S-matrix approach & duality

The problem

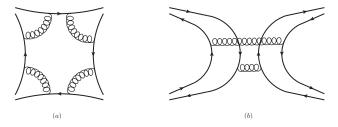
- find a flavour and crossing symmetric simultaneous solution (for coupling and masses) to the duality constraints coming from *MM*, *MB* and *BB* scattering
 - starting from some lowest order (planar) approx. with no loops
 - including higher order (non-planar) terms and loops
- understand EXD breaking for both mesons and baryons
- construct a Topological Expansion for strong amplitudes
- We shall briefly examine
 - Duality in MM → MM amplitudes
 - Duality in MB → MB amplitudes
 - Duality in $B\overline{B} \rightarrow B\overline{B}$ amplitudes

Duality in $MM \rightarrow MM$ amplitudes

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

March 12, 2018 9 / 48


3 > 4 3

$MM \rightarrow MM$ amplitudes

• At planar level one has duality between planar *s*- and *t*-channels, exact EXD and no exotic intermediate states (diagram (a))

• Understood in terms of large-*N* expansions (either 't Hooft, 1974 or topological Veneziano, 1974)

• Topological Expansion Veneziano, 1974 can be used to relate EXD breaking to non-planar corrections

• Duality connects glueball (Pomeron) exchange to a non-resonant non-planar two-meson background (diagram (b))

G.C. Rossi (Tor Vergata)

The OZI rule emerges

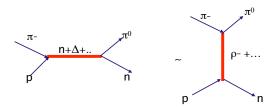
- Large-N (and strong coupling) expansions support the usual OZI rule suppressing decays that proceed via qq
 q
 annihilation wrt decays by string breaking (with creation of a q-q
 pair)
- It suppresses flavour mixing in the mass matrix
- It is well obeyed in vector mesons ("ideal" mixing)
- Badly broken in light pseudoscalar sector. Reasons
 - Light masses of (pseudo)NG bosons
 - Large anomaly contribution (WV solution of the U_A(1) problem)
 - OZI preserving decay of heavy quarkonia is often not allowed kinematically, so the lightest ones (*J*/ψ, Υ, . . .) are narrow

Duality in $MB \rightarrow MB$ amplitudes

G.C. Rossi (Tor Vergata)

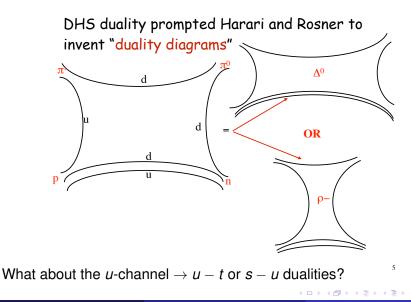
Tetra- & penta-quarks

March 12, 2018 12 / 48


4 A N

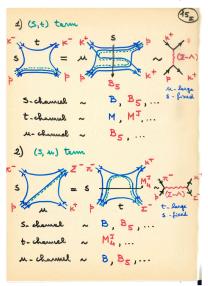
Dolen-Horn-Smit duality - 1968

Dolen-Horn-Schmit duality


s-and t-channel descriptions of pion-nucleon charge exchange are, on average, equivalent, complementary,

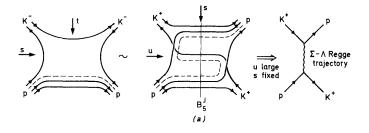
DUAL

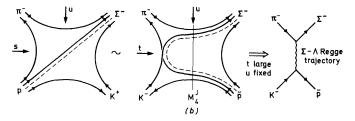
More precisely, DHS suggested duality between Regge poles in the *t*-channel and resonances in *s*- and *u*-channel


s - t duality

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks


Anticipating, in green the colour flow of the baryon (junction)



a slide from my 1977 CERN seminar

G.C. Rossi (Tor Vergata)

From the 1980 Rossi–Veneziano Physics Report

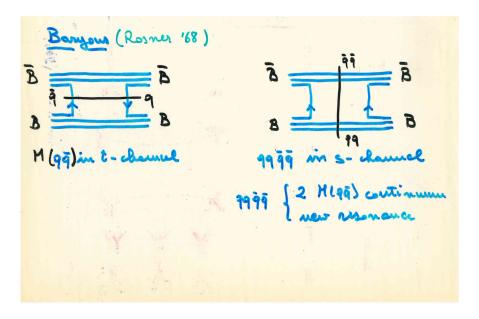
Multiquark states are needed already at "planar level"

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

March 12, 2018 16 / 48

Duality in $B\bar{B} \rightarrow B\bar{B}$ amplitudes


G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

March 12, 2018 17 / 48

э

- A - TH

The systematics of

- hadronic states
- amplitudes

(in the QCD string language)

Hadronic states - I

Hadronic states \rightarrow irreducible gauge invariant operators in QCD

Table IIa

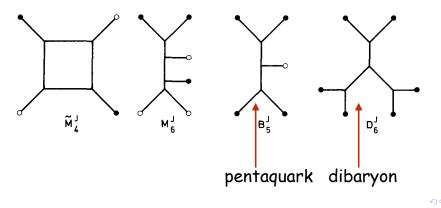
Simplest mesons and baryons : colour structure and string picture

HADRON	GAUGE INVARIANT OPERATOR	STRING PICTURE
M ₂ = qq meson	$\tilde{q}^{j_{2}}(x_{2}) \left[P exp\left(ig \int_{x_{1}}^{x_{2}} A_{\mu} dx^{\mu} \right) \right]_{j_{2}}^{j_{1}} q_{j_{1}}(x_{1})$	×2 ×1 c q q
M _o = quarkless meson	$Tr\left[P exp\left(ig \oint A_{\mu} dx^{\mu}\right)\right]$	\bigcirc
B ₃ = qqq baryon	$\begin{split} & \varepsilon^{ j_1 j_2 j_3} \left[P \exp \left(ig \int_{x_1}^x A_{\mu} dx^{\mu} \right) q(x_1) \right]_{j_1} \\ & \left[P \exp \left(ig \int_{x_2}^x A_{\mu} dx^{\mu} \right) q(x_2) \right]_{j_2} \left[P \exp \left(ig \int_{x_3}^x A_{\mu} dx^{\mu} \right) q(x_3) \right]_{j_3} \end{split}$	$q \begin{bmatrix} x_1 & x_2 \\ \varepsilon & x \\ q & \varepsilon & x_3 \end{bmatrix}$

exponential used in table 2a					
Hadron	Gauge invariant operator	String picture			
M₄ = baryonium with qqq̄q quantum numbers	$\varepsilon_{j_1j_2j_2} e^{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_2} \left[\bar{q}(\mathbf{y}_1) \exp \int_{y}^{y_1} \int_{z}^{z_1} \left[\bar{q}(\mathbf{y}_2) \exp \int_{y}^{y_2} \right]^{j_2}$	$y_1 \overset{\overline{q}}{\bigvee} y \overset{q}{x_1} x_1$			
	$\times \left[\exp \int_{x}^{y} \int_{k_{1}}^{j_{1}} \left[\exp \int_{x_{1}}^{x} q(x_{1}) \right]_{k_{2}} \left[\exp \int_{x_{2}}^{x} q(x_{2}) \right]_{k_{3}}$	$\frac{y_2}{\bar{q}}$ \bar{q} x_2			
$M_2^2 = baryonium$ with qq̃ quantum numbers	$\varepsilon_{j_1j_2j_1} \varepsilon^{k_1k_2k_3} \left[\bar{q}(y_1) \exp \int_{y}^{y} \right]^{j_1} \\ \times \left[\exp \int_{x}^{y} \int_{k_1}^{y_2} \left[\exp \int_{x}^{y} \int_{k_2}^{y_3} \left[\exp \int_{x_1}^{x} q(x_1) \right]_{k_3} \right]$	$\begin{array}{c} y_1 \\ y_2 \\ \overline{q} \\ \varepsilon \end{array} \begin{array}{c} x_6 \\ \varepsilon \\ \varepsilon \end{array} \begin{array}{c} x_1 \\ \varepsilon \\ q \end{array}$			
M ⁷ ₀ = quarkless baryonium	$\varepsilon_{j_1 j_2 j_2} \varepsilon^{k_1 k_2 k_3} \left[\exp \int_{x}^{y} \int_{k_1}^{j_1} \left[\exp \int_{x}^{y} \int_{k_2}^{j_2} \left[\exp \int_{x}^{y} \int_{k_3}^{j_3} \right]_{k_3}^{k_3} \right]$	ε			

The three $(N_c = 3)$ baryonium families: colour structure and string picture. The symbol exp \int_x^y is a shorthand for the path ordered exponential used in table 2a

G.C. Rossi (Tor Vergata)


Hadronic states - III

G.C. Rossi (Tor Vergata)

March 12, 2018 22 / 48

æ

Other multiquark states (from G. C. Rossi & GV, Phys. Rep. 1982)

$B\bar{B} ightarrow B\bar{B}$ amplitudes - Scattering

BŘ→BŘ t-channel^(b) Junction duality diagrams s-channel Multiplicity^(a) annihilation formation exchange Slope M $\bar{n}(s') \simeq \bar{n}_{e^+e^-}(s')$ $s^{\alpha R^{-1}} \sim s^{-1/2}$ α'n Regge pole M_2^J 2 $\bar{n}(s') \simeq 2\bar{n}_{e^+e^-}(s'/4) \qquad s^{2\alpha_R-2} \sim s^{-1}$ $\frac{1}{2}\alpha'_{\rm B}$ 2-Reggeon cut M_{J}^{J} 3 $\bar{n}(s') \simeq 3\bar{n}_{e^+e^-}(s'/9) \quad s^{3\alpha_R-3} \sim s^{-3/2}$ $\frac{1}{3}\alpha'_{\rm R}$ 3-Reggeon cut 4 Non-resonant $\bar{n}(s') \simeq 2\bar{n}_{e^+e^-}(s'/4) \quad s^{\alpha p-1} \sim s^0$ $\frac{1}{2}\alpha_{\mathbf{k}}$ two jet Pomeron background

Contributions to $B\bar{B}$ scattering ($N_c = 3$)

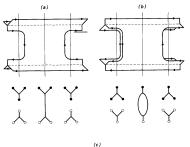
^(a)s' is the invariant mass of the final state excluding the leading baryons.

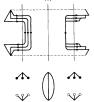
^(b)To estimate the s-behaviour we have taken $\alpha_R = 0.5$.

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

$B\bar{B} ightarrow B\bar{B}$ amplitudes - Annihilation

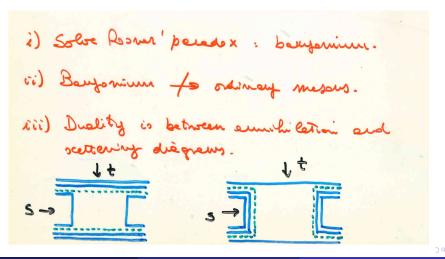

Contribution to $B\bar{B}$ annihilation ($N_c = 3$)


BB→BB Junction duality diagrams annihilation		s-channel formation	Multiplicity	t-channel ^(a) exchange	Slope
		1qq̃ — jet	$\bar{n}(s) \simeq \bar{n}_{e^+e^-}(s)$	$s^{\alpha}(M'_{4})^{-1} \sim s^{-3/2}$ Regge pole	$\alpha'(M_4^J) \sim \alpha'_R$
2		2qq̃ – jets	$\bar{n}(s) \simeq 2\bar{n}_{e^+e^-}(s/4)$	$s^{\alpha}(M_2^{\ell})^{-1} \sim s^{-1}$ Regge pole	$lpha'(M_2') \sim \frac{1}{2} lpha'_R$
3		3qą̃ – jets	$\bar{n}(s) \simeq 3\bar{n}_{e^+e^-}(s/9)$	$s^{\alpha}(M_0^{j})^{-1} \sim s^{-1/2}$ Regge pole	$\alpha'(\mathbf{M}_0^l) \sim \frac{1}{3} \alpha'_{\mathbf{R}}$
' آ		Mo	$\bar{n}(s) \simeq 2\bar{n}_{e^+e^-}(s/4)$	$s^{2\alpha_B-2} \sim s^{-2}$ 2-Reggeon cut	$\frac{1}{2}\alpha'_{R}$

^(a)To estimate the s-behaviour we have taken $\alpha_B \simeq 0$.

$B\bar{B} ightarrow B\bar{B}$ scattering - an artistic view

Keep track of the junction/colour/baryon number flow Neglect for the moment meson and baryon loops

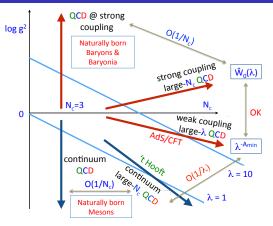


G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

$B\bar{B} ightarrow B\bar{B}$ annihilation

Solution of Rosner' paradox \rightarrow just add 90° rotated diagrams!



G.C. Rossi (Tor Vergata)

Field theory

- The limits of QCD
- from large g^2 & fixed N_c ...
 - Meson propagator and amplitudes
 - Baryon propagator and amplitudes
- ... to small $g^2 \& N_c$ continuum QCD

The interesting limits of **CD**

We focus on the limits (we have good theoretical control of)

- 't Hooft large-*N* limit (fixed N_f and fixed $\lambda = g^2 N$)
- (lattice) strong coupling limit $g^2
 ightarrow \infty$, fixed N
- large λ limit with N large and g^2 possibly small (AdS/CFT)

三 ト イヨト

 $q\bar{q}$ mesons are intermediate states in the gauge invariant correlator

 $G_{\mathcal{M}}(\mathcal{C}_{t'},\mathcal{C}_t) = \langle \mathcal{M}(\mathcal{C}_{t'}) \mathcal{M}^{\dagger}(\mathcal{C}_t) \rangle$

where

$$\mathcal{M}(\mathcal{C}_t) = \frac{1}{\sqrt{N_c}} \bar{q}(\vec{r}, t) \mathcal{U}[\mathcal{C}_t] q(\vec{s}, t), \quad \mathcal{U}[\mathcal{C}_t] = \mathcal{P} \exp\left[ig \int_{\vec{r}}^{\vec{s}} d\vec{x} \, \vec{\mathcal{A}}(\vec{x}, t)\right]$$

 C_t is a line joining the point (\vec{r}, t) with (\vec{s}, t) Contracting the quark fields, one finds

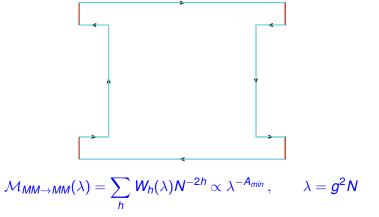
$$G_{\mathcal{M}}(\mathcal{C}_{t'},\mathcal{C}_{t}) = \frac{1}{N_{c}} \frac{\int \prod_{i} dU_{i} \operatorname{Tr} \left(U^{\dagger}[\mathcal{C}_{t}] S_{F}(\vec{r},t;\vec{r},t') U[\mathcal{C}_{t'}] S_{F}(\vec{s},t';\vec{s},t) \right) e^{-\frac{1}{g^{2}} S_{LYM}(U)}}{\int \prod_{i} dU_{i} e^{-\frac{1}{g^{2}} S_{LYM}(U)}}$$

In the static limit we replace the quark propagator with

$$S_{F}(\vec{s}, t'; \vec{s}, t) \rightarrow U[\vec{s}, t' - t] = \prod_{\tau \in [t, t']} U[\vec{s}, \tau]$$

$$G_{\mathcal{M}}(\mathcal{C}_{t'}, \mathcal{C}_{t}) = \frac{1}{N_{c}} \frac{\int \prod_{i} dU_{i} \operatorname{Tr} \left(U^{\dagger}[\mathcal{C}_{t}] U^{\dagger}[\vec{r}, t - t'] U[\mathcal{C}_{t'}] U[\vec{s}, t' - t] \right) e^{-\frac{1}{g^{2}} S_{LYM}(U)}}{\int \prod_{i} dU_{i} e^{-\frac{1}{g^{2}} S_{LYM}(U)}}$$

$$\vec{s}, t \qquad U[\vec{s}, t' - t] \qquad \vec{s}, t'$$


$$U^{\dagger}[\mathcal{C}_{t}]$$

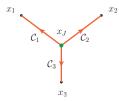
$$\vec{r}, t \qquad U^{\dagger}[\vec{r}, t' - t] \qquad \vec{r}, t'$$

G_M(C_{t'}, C_t) = ⟨Wilson loop with sides |s̄ - r̄| × |t' - t|⟩
string tension κ = a⁻² log g²N

$MM \rightarrow MM$ amplitude

Dual s-t cross symmetric planar amplitude

Interestingly, for mesons the SCLE can be argued to become, at large-*N*, a large $\lambda = g^2 N$ expansion, valid even at small g^2 Zuber


Baryon propagator and amplitudes

In $SU(N_c)$ QCD the (normalized) wave-function of the baryon reads

 $B(\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{N_c}) = \frac{1}{\sqrt{N_c!}} \epsilon_{i_1 i_2 \dots i_{N_c}} U[\mathcal{C}_1]_{j_1}^{i_1} q(x_1)^{i_1} U[\mathcal{C}_2]_{j_2}^{i_2} q(x_2)^{j_2} \dots U[\mathcal{C}_{N_c}]_{j_{N_c}}^{i_{N_c}} q(x_{N_c})^{j_{N_c}}$

$$U[\mathcal{C}_k]_{j_k}^{i_k} = \mathcal{P} \exp\left[ig \int_{\mathcal{C}(x_J, x_k)} dy^{\mu} A_{\mu}(y)\right]_{j_k}^{i_k}, \quad k = 1, 2, \dots, N_c$$

with $\mathcal{C}(x_J, x_k)$ a curve joining the point x_J to x_k .

We want to compute in the strong coupling limit the correlator

 $G_B(\{\vec{r}_k, k=1,2,\ldots,N_c\}, \vec{r}_J; t'-t) = \langle B(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_{N_c}) B^{\dagger}(\mathcal{C}_1', \mathcal{C}_2', \ldots, \mathcal{C}_{N_c}') \rangle$

The computational strategy outlined for the meson propagator leads to a kind of "book" with pages sewed by a Levi-Civita symbol

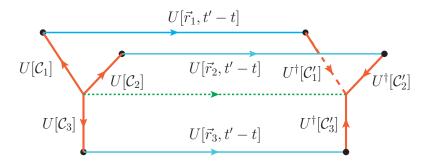


Figure: The $N_c = 3$ baryon propagator.

Tiling the pages of the book with plaquettes from the action

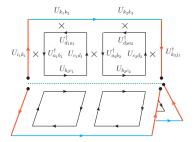


Figure: Tiling each of the the $N_c = 3$ pages with two plaquettes.

The group integral on the links along the dotted lines gives

$$\sum_{\ell_{k}} \int dU U_{i_{1}\ell_{1}} U_{i_{2}\ell_{2}} \dots U_{i_{N_{c}}\ell_{N_{c}}} \int dU U_{j_{1}\ell_{1}} U_{j_{2}\ell_{2}} \dots U_{j_{N_{c}}\ell_{N_{c}}} = \\ = \frac{1}{N_{c}!^{2}} \epsilon_{i_{1}i_{2}\dots i_{N_{c}}} \epsilon_{j_{1}j_{2}\dots j_{N_{c}}} \sum_{\ell_{k}} \epsilon_{\ell_{1}\ell_{2}\dots\ell_{N_{c}}} \epsilon_{\ell_{1}\ell_{2}\dots\ell_{N_{c}}} = \frac{1}{N_{c}!} \epsilon_{i_{1}i_{2}\dots i_{N_{c}}} \epsilon_{j_{1}j_{2}\dots j_{N_{c}}}$$

$B\bar{B} \rightarrow B\bar{B}$ amplitudes

Scattering

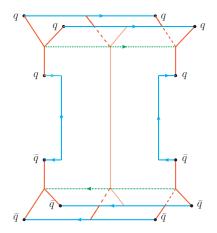


Figure: $B\overline{B}$ scattering at large λ , showing an *s*-channel M_4^J baryonium (tetraquark) state dual to a *t*-channel $q\overline{q}$ meson.

$B\bar{B} \rightarrow B\bar{B}$ amplitudes

Annihilation

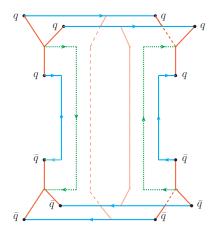
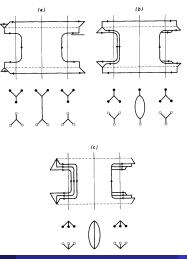



Figure: $B\overline{B}$ annihilation at large λ , showing a pair of *s* channel $q \overline{q}$ mesons dual to a *t*-channel M_2^J baryonium.

March 12, 2018 37 / 48

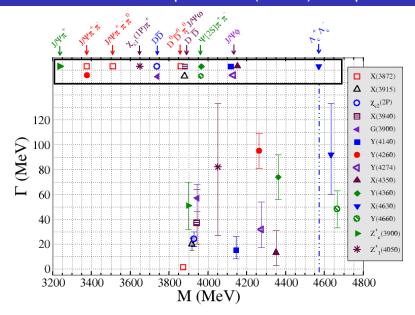
$B\bar{B} \rightarrow B\bar{B}$ amplitudes

We recover the diagrams of the previous topologically inspired picture of $B\bar{B} \rightarrow B\bar{B}$ amplitudes. Recall our picture of scattering amplitudes

A few phenomenological observations

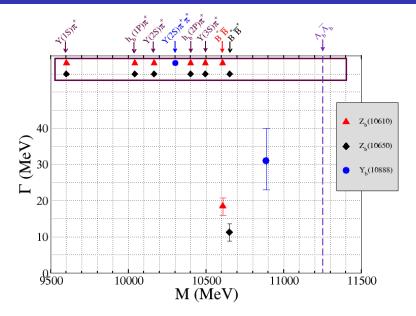
G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

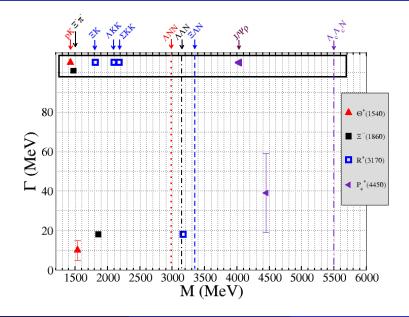

March 12, 2018 39 / 48

I - JOZI rule

- Large-*N* (Witten,1979) and strong coupling (GCR & GV, 2016) expansions support a Junction OZI (JOZI) rule, suppressing decays that proceed via junction-antijunction annihilation (leading to mesonic decays) wrt decays by string breaking (leading to baryonic decays)
- We have "mesophobic tetraquarks" (unlike molecular tetraquarks that should love mesons ... do we have a clear-cut distinction?)
- We might expect tetraquark states lying below threshold for baryonic decays to be unusually narrow.
- Peculiar tetraquark coupling to meson pairs
- A systematic analysis is missing (at least from our side)

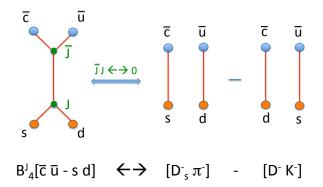

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

II - Hidden charm tetraquarks: a (dated) compilation



G.C. Rossi (Tor Vergata)

III - Hidden bottom tetraquarks: a (dated) compilation



IV - Pentaquarks: a (dated) compilation

V - Tetraquark coupling to meson pairs

$$\begin{split} \bar{\boldsymbol{q}}_{i_{1}}^{f_{1}} \bar{\boldsymbol{q}}_{i_{2}}^{f_{2}} [\sum_{k} \epsilon_{ki_{1}i_{2}} \epsilon_{kj_{1}j_{2}}] \boldsymbol{q}_{j_{1}}^{g_{1}} \boldsymbol{q}_{j_{2}}^{g_{2}} = \bar{\boldsymbol{q}}_{i_{1}}^{f_{1}} \bar{\boldsymbol{q}}_{i_{2}}^{f_{2}} [\delta_{i_{1}j_{1}} \delta_{i_{2}j_{2}} - \delta_{i_{1}j_{2}} \delta_{i_{2}j_{1}}] \boldsymbol{q}_{j_{1}}^{g_{1}} \boldsymbol{q}_{j_{2}}^{g_{2}} = \\ = [\bar{\boldsymbol{q}}_{i}^{f_{1}} \boldsymbol{q}_{i}^{g_{1}}] \times [\bar{\boldsymbol{q}}_{j}^{f_{2}} \boldsymbol{q}_{j}^{g_{2}}] - [\bar{\boldsymbol{q}}_{i}^{f_{1}} \boldsymbol{q}_{i}^{g_{2}}] \times [\bar{\boldsymbol{q}}_{j}^{f_{2}} \boldsymbol{q}_{j}^{g_{1}}] \end{split}$$

Conclusions

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

March 12, 2018 45 / 48

2

- The prediction of baryonium states is almost 50 years old
- We presented a Topological Expansion for baryon amplitudes supported by (old) large-N and (recent) large-g² arguments
- Duality in $B\bar{B}$ amplitudes is between annihilation & scattering
- i.e. annihilation between 1, 2, 3 $q\bar{q}$ -jets and baryonia with $qq\bar{q}\bar{q}$, $q\bar{q}$ and no-quark content, respectively (N = 3)
- Duality diagrams displaying "flavour flow" must be augmented by "junction flow" \rightarrow impact on "exchange degeneracy" of baryons

Conclusions - II

- Including quark loops makes baryonia to decay into baryons plus mesons, but not just into mesons \rightarrow JOZI-rule
- Tetraquark states can be unusually narrow if near BB threshold
- Including baryon loops makes baryonia to mix with ordinary mesons \rightarrow JOZI-rule violation
- Baryonium Regge trajectory intercepts, slopes and mixings can be estimated
- $B\overline{B}$ annihil. dominated by a I=0 flat trajectory with final states
 - consisting of three qq̄-jets,
 - multiplicity $n_{ann}^{p\bar{p}}: n_{scat}^{pp}: n_{ann}^{e^+e^-} = 3:2:1$
- More work needed to separate baryonia from other exotic multiquark states (e.g. molecules)

イロン イ理 とくほ とくほ とう

Thanks for your attention

< A >