

Matthew Shepherd Indiana University

Bound States in Strongly Coupled Systems
Florence, Italy
March 15, 2018

Spectroscopy and "Understanding QCD"

- Features of QCD
 - six flavors of quarks with various masses
 - strongly interacting quarks and gluons
 - asymptotic freedom
 - confinement

Hadron
Spectrum
(patterns)

- Features of QCD
 - six flavors of quarks with various masses
 - strongly interacting quarks and gluons
 - asymptotic freedom
 - confinement
- Observations about hadrons in nature
 - spectrum dominated by colorless "quark model" states
 - gluonic degrees of freedom suppressed or difficult to observe
 - structure and spectrum of hadrons containing light quarks exhibit complexity (and simplicity)

- Features of QCD
 - six flavors of quarks with various masses
 - strongly interacting quarks <u>and</u> gluons
 - asymptotic freedom
 - confinement
- Observations about hadrons in nature
 - spectrum dominated by colorless "quark model" states
 - gluonic degrees of freedom suppressed or difficult to observe
 - structure and spectrum of hadrons containing light quarks exhibit complexity (and simplicity)

Degrees of Freedom: a spin-1/2 fermion + spin-1/2 anti-fermion, each with mass of 1.5 GeV

Meson Quantum Numbers

color singlet quark anti-quark

$$J = L + S$$
 $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Allowed J^{PC}: 0-+, 0++, 1--, 1+-, 2++, ... Forbidden J^{PC}: 0--, 0+-, 1-+, 2+-, ...

Light Quark Mesons from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

A Model for Hybrids

color singlet quark anti-quark

$$J = L + S$$
 $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Allowed J^{PC}: 0-+, 0++, 1--, 1+-, 2++, ... Forbidden J^{PC}: 0--, 0+-, 1-+, 2+-, ...

A Model for Hybrids

color singlet quark anti-quark

$$J = L + S$$
 $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Allowed J^{PC}: 0-+, 0++, 1--, 1+-, 2++, ... Forbidden J^{PC}: 0--, 0+-, 1-+, 2+-, ...

gluonic component:

$$(\int^{PC})_g = \int^{+-}$$

mass $\approx 1.0-1.5 \text{ GeV}$

color-octet $q\overline{q}$ pair q

Lightest Hybrids

$$S_{q\overline{q}} = I$$
 $S_{q\overline{q}} = 0$
 J^{PC} : 0-+, 1-+, 2-+ 1--

*exotic hybrid"

- QCD seems to permit a particle zoo nature prefers just a few species.
 - if true, why?

- QCD seems to permit a particle zoo nature prefers just a few species.
 - if true, why?
- An interesting history of hybrid searches
 - reports: VES, E852, Crystal Barrel, COMPASS, ...
 - no clear spectrum of states
 - GlueX is unique: intensity and production mechanism

- QCD seems to permit a particle zoo nature prefers just a few species.
 - if true, why?
- An interesting history of hybrid searches
 - reports: VES, E852, Crystal Barrel, COMPASS, ...
 - no clear spectrum of states
 - GlueX is unique: intensity and production mechanism
- An interesting contemporary landscape
 - strong evidence for new types of mesons in heavy quark systems
 - clear tetraquark and pentaquark candidates; perhaps hybrids with conventional quantum numbers
 - GlueX is complementary: exploration of light quarks

- QCD seems to permit a particle zoo nature prefers just a few species.
 - if true, why?
- An interesting history of hybrid searches
 - reports: VES, E852, Crystal Barrel, COMPASS, ...
 - no clear spectrum of states
 - GlueX is unique: intensity and production mechanism
- An interesting contemporary landscape
 - strong evidence for new types of mesons in heavy quark systems
 - clear tetraquark and pentaquark candidates; perhaps hybrids with conventional quantum numbers
 - GlueX is complementary: exploration of light quarks
- State of the art theory input is essential to constrain models and allow experimental extraction of meaningful observables

GlueX in Hall D at 12 GeV JLab

- GlueX + Hall D beamline features:
 - beam species: polarized photon; peak polarization at 9 GeV (assuming 12 GeV electron beam)
 - design intensity: 200 kHz hadronic interaction rate around 9 GeV
 - energy optimized for production of mesons with masses up to 3 GeV

120+ members from 26 institutions

Spring 2018: 40 kHz event rate — about 600 MB/s (several PB raw data collected to date)

rubber eraser

hardwood casing (with hexagonal profile)

painted steel ferrule

Typical data rate:
2-4 lines of equations
per minute

l€ coin (for scale)

graphite (#2)

Beam Flux and Polarization

Single Pseudoscalar Production Asymmetry

 Angle between polarization plane and reaction plane is sensitive to parity of exchange

$$\sigma_{pol}(\phi, \phi_{\gamma}^{lin}) = \sigma_{unpol} \left[1 - P_{\gamma} \Sigma cos \left(2(\phi - \phi_{\gamma}^{lin}) \right) \right]$$

- Asymmetry Σ can have a t dependence
- Constrains t-channel backgrounds for s-channel baryon resonance production

Exchange JPC

$$1^{--}:\omega,\rho$$

$$1^{+-}:b,h$$

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

Asymmetry Measurement

$$\sigma_{pol}(\phi, \phi_{\gamma}^{lin}) = \sigma_{unpol} \left[1 - P_{\gamma} \Sigma cos \left(2(\phi - \phi_{\gamma}^{lin}) \right) \right]$$

Polarized Yields

$$Y_{\parallel}(\phi) \sim N_{\parallel} A(\phi) (1 - P_{\parallel} \Sigma cos2\phi) \qquad \phi_{\gamma}^{lin} = 0^{\circ}$$

$$Y_{\perp}(\phi) \sim N_{\perp} A(\phi) (1 + P_{\perp} \Sigma cos2\phi)$$
 $\phi_{\gamma}^{lin} = 90^{\circ}$

$$\phi_{\gamma}^{lin} = 0^{\circ}$$
$$\phi_{\gamma}^{lin} = 90^{\circ}$$

Asymmetry Measurement

Meson Production Plane

Plane Parallel to Lab Floor (same as PARA polarization plane)

$$\sigma_{pol}(\phi, \phi_{\gamma}^{lin}) = \sigma_{unpol} \left[1 - P_{\gamma} \Sigma cos \left(2(\phi - \phi_{\gamma}^{lin}) \right) \right]$$

Polarized Yields

$$Y_{\parallel}(\phi) \sim N_{\parallel} A(\phi) (1 - P_{\parallel} \Sigma cos2\phi) \qquad \phi_{\gamma}^{lin} = 0^{\circ}$$

$$Y_{\perp}(\phi) \sim N_{\perp} A(\phi) (1 + P_{\perp} \Sigma cos2\phi)$$
 $\phi_{\gamma}^{lin} = 90^{\circ}$

$$\phi_{\gamma}^{lin} = 0^{\circ}$$
$$\phi_{\gamma}^{lin} = 90^{\circ}$$

$$rac{Y_{\perp}-F_RY_{\parallel}}{Y_{\perp}+F_RY_{\parallel}}=ar{P}\Sigma\cos(2\phi)+\cdots$$
 (terms related to differences in beam properties)

process is encoded here

Single Pseudoscalar Production Asymmetry

- Correlated uncertainty due to polarization: < 5%
- GlueX π⁰ production asymmetry
 - more precise than SLAC
 - no dip around $t = 0.5 (GeV/c)^2$
- First measurements of η production asymmetry
- A test of high energy t-channel production models
- Similar production mechanism expected for exotics

Photoproduction of \u03c4 and \u03c4'

$$\bullet \quad \text{Expect:} \quad \frac{\Sigma_{\eta}}{\Sigma_{\eta'}} \approx 1$$

- V. Mathieu et al. [JPAC], PLB 774, 362 (2017)
- Verifies our understanding of structure of η and η ' and production dynamics

Photoproduction of n and n'

• Expect:
$$\frac{\Sigma_{\eta}}{\Sigma_{\eta'}} \approx 1$$

- V. Mathieu et al. [JPAC], PLB 774, 362 (2017)
- Verifies our understanding of structure of η and η ' and production dynamics

Photoproduction of TT-

- Charge exchange process
- Dominated by π exchange at low t

- Physics objectives:
 - production dynamics encoded in the shape of cross section at threshold
 - s-channel production of pentaquark candidates observed by LHCb

γp→//ψp Cross Section

- Preliminary results from GlueX:
 - sensitivity to shape at threshold
 - ability to set limits on P_c production
- Compare with P_c production predictions
 - M. Karliner and J.L. Rosner, PLB 752, 329 (2016)
 - A. Blin et al. [JPAC], PRD 94 034002 (2016)

from: A. Blin et al. [JPAC], PRD 94 034002 (2016)

GlueX Intensity

- GlueX is well-positioned to make new discoveries
 - example: 3+ orders of magnitude over previous in $\pi\pi$ channel
- GlueX future: about 10x more data and enhanced sensitivity to final states with strange quarks (mesons and baryons)

Theory/Experiment Strategy (Discussion)

- What constitutes discovery of hybrids? (Is there a "smoking gun"?)
 - Need a collection of observations such that the simplest explanation of all requires invoking the existence of hybrids.

Theory/Experiment Strategy (Discussion)

- What constitutes discovery of hybrids? (Is there a "smoking gun"?)
 - Need a collection of observations such that the simplest explanation of all requires invoking the existence of hybrids.
- What can be measured?
 - bumps in an invariant mass spectrum
 - intensity and phase difference for a various JPC values
 - product of production cross section and branching fraction
 - production features: asymmetry, spin density matrix elements, ...

Theory/Experiment Strategy (Discussion)

- What constitutes discovery of hybrids? (Is there a "smoking gun"?)
 - Need a collection of observations such that the simplest explanation of all requires invoking the existence of hybrids.
- What can be measured?
 - bumps in an invariant mass spectrum
 - intensity and phase difference for a various J^{PC} values
 - product of production cross section and branching fraction
 - production features: asymmetry, spin density matrix elements, ...
- What input is needed from theory?
 - how to establish existence of resonances and resonance parameters from bumps, intensities, and phase differences
 - comparative information is perhaps more useful and easier to calculate:
 - hybrid masses relative to known states: number, hierarchy, degeneracies
 - comparative information about total width
 - partial widths of specific decays compared to known states
 - production mechanisms when compared with known states

Summary

- Use spectroscopy to understand the degrees of freedom present when hadrons are constructed in QCD
 - how are these degrees of freedom linked to interactions in the QCD Lagrangian?

Summary

- Use spectroscopy to understand the degrees of freedom present when hadrons are constructed in QCD
 - how are these degrees of freedom linked to interactions in the QCD Lagrangian?
- The last ten years have been very exciting
 - candidates for hybrids, pentaquarks, tetraquarks
 - most activity in the heavy quark sector

Summary

- Use spectroscopy to understand the degrees of freedom present when hadrons are constructed in QCD
 - how are these degrees of freedom linked to interactions in the QCD Lagrangian?
- The last ten years have been very exciting
 - candidates for hybrids, pentaquarks, tetraquarks
 - most activity in the heavy quark sector
- GlueX is well positioned to carry this momentum into the future
 - unique opportunity to study of the light quark meson spectrum in photoproduction
 - large existing data set: some preliminary results already; well-positioned to launch core spectroscopy program
 - theory input is absolutely essential in order to realize the goals of the experiment

