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The difficulty with resonances
Not possible to directly calculate
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Large body of formal developments spannlng many decades

Scatterlng

Liischer (1986,1991) < Rummukainen, Gottlieb (1995)
Li, Liu (2004) o Feng, Li, Liu (2004)
Detmold, Savage (2004) < Kim, Sachrajda, Sharpe (2005)
Christ, Kim, Yamazaki (2005) ¢ Bernard, et. al. (2008)
Davoudi, Savage (2011) < Polejaeva, Rusetsky (2012)
Leskovec, Prelovsek (2012) o Gockeler et al. (2012)
MTH, Sharpe (2012) ¢ Briceiio, Davoudi (2012,2013)
Briceno (2014) < MTH, Sharpe (2015,2016)
Briceiio, MTH, Sharpe (2017)

Hammer, Pang, Rusetsky (2017) < Mai, Doring (2017)
Doring, et al. (2018)

Resonant form factors

Briceiio, Davoudi (2012) < Bernard et al. (2012)
Detmold, Flynn (2015) < Briceio, MTH (2016)
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Lellouch, Liischer (2000)
Kim, Sachrajda, Sharpe (1995)
Christ, Kim, Yamazaki (2005) < Meyer (2011)
MTH, Sharpe (2012) ¢ Briceno, Davoudi (2012)
Bernard et al. (2012) o Agadjanov et al. (2014)
Briceiio, MTH, Walker-Loud (2015)

Briceiio, MTH (2015)
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Solution: Relations between finite- and infinite-volume physics

Transition amplitudes
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Basic set-up

----------------
-
-
-
-

I

1 E(L) Generic relativistic QF T

............. 1. Include all inkeractions

S Eo(L) b g = X

2. Wo power-counting scheme

cubic, spatial volume (extent [, )

periodic boundary conditions ”‘* Not possible to directly calculate |
Fe (2r/L)7 | scattering observables to all orders |

3 time direction infinite g I But it is possible to derive |
| . |

- general, all-orders relations |

L large enough to ignore € | to finite-volume quantities {

i

Assume lattice effects are small and accommodated elsewhere

Work in continuum field theory throughout



In the case of two-to-two scattering
Liischer’s formalism + extensions give a general mapping

- I

All results contained in a generalized quantization condition

det[My Y (E}) + F(E,,P,L)] =0

scattering amplitude known geometric function

Matrices in angular momentum, spin and channel space

Liischer, Rummukainen, Gottlieb, Li, Liu, Feng, Detmold, Savage, Kim, Sachrajda, Sharpe, Christ, Kim, Yamazaki, Bernard,
Doring, Lage, Meiliner, Rusetsky, Davoudi, Savage, Polejaeva, Leskovec, Prelovsek, Gockeler, Horsley, Rakow, Schierholz,

Zanotti, MTH, Sharpe, Briceino, Davoudi
v
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det[My Y (E}) + F(E,,P,L)] =0

scattering amplitude known geometric function

Matrices in angular momentum, spin and channel space

Liischer, Rummukainen, Gottlieb, Li, Liu, Feng, Detmold, Savage, Kim, Sachrajda, Sharpe, Christ, Kim, Yamazaki, Bernard,
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Zanotti, MTH, Sharpe, Briceino, Davoudi

™ Varying b, ﬁ gives more constraints on functions of E*? = E? — P?
M Requires that energy is below lowest three-particle threshold
™ Derivation ignores (drops) suppressed volume effects (¢~ ~1)

M Only useful if one truncates angular momentum space




Using the result: simplest case is a single-channel
e.g. for pions in a p-wave the relation reduces to
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Our aim is to extend the derivation for arbitrary
relativistic two- and three-particle systems
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Our aim is to extend the derivation for arbitrary
relativistic two- and three-particle systems

> 3w J><,

Potential applications...
Studying three-particle resonances

w(782) — mrm
N(1440) — Nm, N7m

Calculating weak decay amplitudes and form factors
K — mnm

Determining three-body mteractlons

NNN three-body forces needed as EFT input
for studying larger nuclei and nuclear matter




Current status

Model- & EFT-independent relation between

finite-volume energies and relativistic two-and-three particle scattering
e R

[ Requires energy is below four-particle production threshold
—MﬂL)

[ Derivation ignores (drops) suppressed volume effects (¢
[ Only useful if one truncates angular momentum space

MTH, Sharpe (2015),(2016) < Briceno, MTH, Sharpe (2017)
see also... Hammer, Pang, Rusetsky (2017) < Mai, Doring (2017) < Doring, et al. (2018)
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Current status

Model- & EFT-independent relation between

finite-volume energies and relativistic two-and-three particle scattering
e ——

[ Requires energy is below four-particle production threshold

[ Derivation ignores (drops) suppressed volume effects (¢ ~L)
[ Only useful if one truncates angular momentum space

[J Assumes no sub-channel two-particle resonances

'J/ o Extension to remove this restriction is nearing completion
, O SEEmEE————

)
[J Derivation assumes identical scalar particles

MTH, Sharpe (2015),(2016) < Briceno, MTH, Sharpe (2017)



Toy numerics

We are also exploring the result numerically to quantitatively understand the
relation between finite- and infinite-volume three-particle physics

Spectrum with no 3-particle interaction Finite-volume effects on a 3-particle bound state
a = —10
5.0

7 \ 3.007 =========mmmmmmmm s
451 — infinite-volume energy
§§ ' 2.991
X 4.0 &) 2.98
S = 2981
~— -\ m

O finite-volume energy

o
= » 2.97 — large-L prediction
: 2.96 1 . . . ,
+ 5 6 7 8 20 25 30 35 40
mL mL

5.0 3.601 s ¢ = (.0
A\ e ().
~ 4.0 — /] ()
S 3.50 .
= | :
& 3.9
3.45 1
3.0
2.5 ; - 3.40 - - ; . : .
6 8 4.5 5.0 5.5 6.0 6.5 7.0
mL

Briceio, MTH, Sharpe (tomorrow)



Simplifications (for numerlcal investigation)
4 Impose a Z, symmetry JMQ =

o Set total momentum to zero P —= ()

4 Take two-to-two scattering to be dominated by s-wave scattering length

1 1
* 9* ~ S E* M E* : ~ .
M (E5, cos ™) ~ M5(E;) 2 Q)Ocp*coté(p*)—zp* —1/a — ip*
s-wave dominance unitarity LO threshold
expansion

4 Take three-to-three scattering to be “isotropic”
Kars(E?; p1-pa2,p1-ph, -+ ) = Kifs(E)

7 compact degrees of freedom




Simplifications (for numerlcal investigation)
4 Impose a Z, symmetry lm'a =

o Set total momentum to zero P —= ()

4 Take two-to-two scattering to be dominated by s-wave scattering length

1 1
* (9* ~ S E* M E* : ~ .
M (E5, cos ™) ~ M5(E;) 2 Q)Ocp*coté(p*)—zp* —1/a — ip*
s-wave dominance unitarity LO threshold
expansion

[ Take three-to-three scattering to be “isotropic”

Kars(E%; p1-pa,p1-ph, -+ ) = Kifs(E)

Simplified quantization condition
A Ey(L)

@ o
Ey(L)

Eo(L) 9, 9,
ng‘?(Ena L, CL) — _1/Kiis{-‘c,)3 (En)
\,known function

(high precision straightforward)




Simplifications (for numerlcal investigation)
4 Impose a Z, symmetry M;‘b =

[ Set total momentum to zero P=0

4 Take two-to-two scattering to be dominated by s-wave scattering length

1 1
E3,cos0%) m~ M3 (E} M3 (E3 N |
MZ( 25 COS ) MQ( 2) 2( 2)O<p*COt5(p*)—Zp* —1/CL—’lp*
s-wave dominance | unitarity LO threshold
expansion

[ Take three-to-three scattering to be “isotropic”

Kars(E%; p1-pa,p1-ph, -+ ) = Kifs(E)

Simplified quantization condition
A Ey(L)
T Ey(L) |
—_—

Eo(L) . A, :
F3*°(En, L,a) = —1/Kips(En) Ms(E, 3, Q) =1 Kirs(E),al
\,known function ! known function

' lving an integral equation
hich . ot d (requires solving g q :
(high precision straightforward) straightforward below threshold)




Relating E and K3

9\/!»
\/Y a o =4
FS(EQn, — —1/IC2 (Fa.n) FiSO(En,L,a) = —1//C§f§3( )
n mlL =6 ma = —10, mL =6
2- 10° g 10
& 2m/CS = %
T SE
A _2_ S
4
1.5 * 3.0 3.5 4.0 45

Within this approximation, the two- and three-

particle sectors are closely analogous
B e S




Unitary bound state

The parameters g = —10% Kffg( ) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)

(2 K2 e —2xkL/\/3 1 g2
Eg(L) =3m — — — (98.35---)| A|? 1+0O —arl
B( ) 3m m (98 )’ ‘ m (RL)S/Z [ T ( 7m276 )]

= e
= _1]]A|?> =0.948 3.00
X r = 0.106844m
2.99
i :
& N 2,98
o Q o
— = 997 © Ep(oo)
=y 0 Ep(L) from q.c. 0 Ep(L) from q.c.
.Em. | | ENR(L) | 2 06 - y | | ENRI(L) |
60 65 70 20 25 30 30 40

m.L m.L



Unitary bound state

The parameters g = —10% /Césfog( ) = 2500 lead to a shallow bound state

Kk ~ 0.1m where EB = 3m — li2/m

Finite-volume behawor of thls state has a known asymptotic form
Meifiner, Rios, Rusetsky (2015)
2

K K2 e —2kL/V3 |
Ep(L) =3m — — — (98.35---)|Al? 14+ 0 —arl
(L) = 3m — = (9835 AP S 14 0( g et )|

1O
D T Y o N SO o Y AU
= { |A|2 — 0. 948 AA’o’ro 3.001L
Slgnlficant finite-volume effects for realistic volumes
R e
—— Ep()
e [ 5 ( L from q.c.
S E
X 2.8 NR(L
=
N
o

W




Relation to the scattering amplitude
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Relation to the scattering amplitude
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2.991

= 208

2,971 ©
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Relation to the scattering amplitude

3.001

2.991

= 208

2.971

2.961_°

°
® o
)
o

Not a fit!
sin? (30 sinh~* \é_—?’,f)

(v ‘k 2
T (R )nm ™ o k2(k2 + 3k2/4)

0.0 0.2 0.4 0.6 0.8 1.0
k/m




Relation to the scattering amplitude

Can be applied outside the unitarity regime!
y e pPIsdounEE e Iy e
\ ma — 10 (o) P
=2 _ 05 o
N—"
s = —1.0 0
= = —20 0
L‘ “f‘:: ( uuouuuomom
5 o 0 00000 0000000 XD D
> 0@ 888885 coumo axoam
aOEASSE
Q 00 oooO@cnI!ID
o 0°°
o
—14L | |
0.0 0.2 0




Toy numerics

We are also exploring the result numerically to quantitatively understand the
relation between finite- and infinite-volume three-particle physics

Spectrum with no 3-particle interaction Finite-volume effects on a 3-particle bound state

7 \ 3.007 =========mmmmmmmm s
451 — infinite-volume energy
E; ' 2.991
X 4.0- S

O finite-volume energy

o
= » 2.97 — large-L prediction
: 2.96 1 . . . ,
+ 5 6 7 8 20 25 30 35 40
mL mL

5.0 3.601 s ¢ = (.0
A\ e ().
~ 4.0 — /] ()
S 3.50 .
= | :
& 3.9
3.45 1
3.0
2.5 ; - 3.40 - - ; . : .
6 8 4.5 5.0 5.5 6.0 6.5 7.0
mL

Briceio, MTH, Sharpe (tomorrow)



To do list...

— ° °

] Remove the restriction on two-particle sub-resonances

e,
.J/ o, First derivation is complete, checking and writing-up

] Extend the mapping to multiple species and channels
] Develop code to explore the relations (especially beyond isotropic)
[J Understand unphysical artifacts that arise for extreme values of Kgs3

] Derive the formalism for three-particle transition amplitudes
[J Perform the first three-particle LQCD calculation



The big picture...

Energies and scattering

E5(L) @
Ei(L) 91) < e, ./> é «J'
FolL) T % © % o

Two-particle sector is reaching maturity
(see Raul Bricefio and John Bulava’s talks)

The three-particle frontier is around the corner
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Energies and scattering

Es(

The three-particle frontier is around the corner

= [ ] () e .J :
El(L) J ‘J \*> 1 ]
- T !} L ' ;
y > @><I,J . é}@ {27

Two-particle sector is reaching maturity
(see Raul Bricefio and John Bulava’s talks)

The big picture...

12

Transition amplitudes

Ey(L)
ne >'vvw<gj M/V"<I.J
Eo(L) gj !j .J

The formalism is in place and being used

o

[m,, — 280 Mevj |
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Energies and scattering

i * v e~
—> <, S
Fo(L) T © % L)
Two-particle sector is reaching maturity
(see Raul Bricefio and John Bulava’s talks)

The three-particle frontier is around the corner

5.0 3.60 = c=00
N —_—0.01
\Q S
45 3.55 E—
£ 40 -
S —_—10
S 3.50
lirj 3.51
3.4
30f—m——————
25 A
4 6 3 3405 50 5.5 6.0

T D — ——— =

Resonant form factors

--------

perT PRV Ba(1)
: E ' Ey(L) —
(2] 12).
e’ J EO(L)

Stay tuned for the first resonant
form factor from LQCD!

= —_—

The big picture...

Transition amplitudes

peTEIUIZ Eo(L)
ol et Bi(D) & W, L)
(2|71, — ’V\l\l\:<

The formalism is in place and being used
16 — : "* N

15— E=10GeV
- boh =6 |p(d) - M, L,)
Ia_’ - M
AL N
Lo T 'ﬁLW‘* i
(4 w N
3 ! 0.151
s ’2 05 . w: i
g F | -
00 ; ? ; r 0.10F
wiGevic) |||

04 06 08 1.0 1.2 A/M;

[]
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2.0 4.0 6.0

10.0 x0.017

A new idea we are starting to test

Thanks for listening! |



Backup Slides



We begin by considering
identical scalar particles
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For now we turn off two-to-three scattering using a

symmetry
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We begin by considering
identical scalar particles

_ - __

For how we turn off two-to-three scatterlng usmg a symmetry

" Three-to-three amplitude has kinematic singularities |

: fully connected correlator with
| iM3_3 = Y ‘

six external legs amputated and projected on shell i

— . Certain external momenta l
put this on-shell! ]l
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We begin by considering
identical scalar particles

_ - __

For how we turn off two-to-three scatterlng usmg a symmetry

! ]

" Three-to-three amplitude has kinematic singularities |

: fully connected correlator with |
1M3_3 4 ‘

six external legs amputated and projected on shell i

~—._ Certain external momenta l
put this on-shell! ]l

Three-to-three amplltude has more degrees of freedom ~
!)\/9) |2 momentum /!’/ |8 momentum ﬂ
>\*!¢ components F

v/v\’ components
® .10 Poincaré generators

ﬂ

l

-10 Poincaré generators

8 degrees of freedom

L 2 degrees of freedom

_—— e e —— e ——— ———— — — S



How can we extract a singular, eight-coordinate function using
finite-volume energies?

- Spectrum depends on a modified quantity with singularities removed

|
‘ df stands for “divergence free” ‘

Same degrees of freedom as _/\/l3 g Smooth, real function (easier to extract) }l

Relation to ./\/lg is known (depends only on on-shell MZ )

e e e e e e —————————————————

| Degrees of freedom encoded in an extended matrix space

!) S5 — 9 l‘

' / (£ —wg, P — k) 0/ N, |
<% > a- — £, m |
e BOOST . ]
| e o k,l,m |
(k is restricted to finite-volume momenta) ) ) f

L , — ;.A_ "




Quantization condition

At fixed (L, ]3) finite-volume energies are solutions to

Fg — matrix that depends on geometrlc functlons and M2_>2

MTH and Sharpe (2014)
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Quantization condition

At fixed (L, ]3) finite-volume energies are solutions to

e = ——— . - ; e tp———— - ——— S—

Fg — matrix that depends on geometrlc functlons and M2_>2

MTH and Sharpe (2014)
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(1). Use two-particle q.c. to constrain M5 and determine F5(FE, P, L).
det|M5 " + By = 0 ———> My ———> F3(E, P, L)



Quantization condition

At fixed (L, ]3) finite-volume energies are solutions to
detkgm {IC 3—|—F3} =0

MTH and Sharpe (2014)
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(1). Use two-particle q.c. to constrain M5 and determine F5(FE, P, L).
det[M2 —|—F2] =0 >M2 *"""‘W} F3(E,ﬁ,L)

(2)‘ Use decomposition + parametrization to express K4r 3(£™) in terms of (v;.
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Kars(E*,Q5,Q3) = Kass|ag, -+, an|€—=— Recall, this is a real, smooth function



Quantization condition

At fixed (L, ]3) finite-volume energies are solutions to
detkgm {IC 3—|—F3} =0

MTH and Sharpe (2014)

S e

(1). Use two-particle q.c. to constrain M5 and determine F5(FE, P, L).
det[M2 —|—F2] =0 >M2 W} Fg(E,ﬁ,L)

(2) Use decomposition + parametrization to express K4r 3(£™) in terms of (v;.

/ o e .
Kars(E*,Q5,Q3) = Kass|ag, -+, an|€—=— Recall, this is a real, smooth function

(3). Use three-particle g.c. with finite-volume energies to determine Kq¢ 3(E™).
det[ICy's + F3] =0 ——> Kar,3(E*) o




Quantization condition

At fixed (L, 15) finite-volume energies are solutions to
detkgm {IC 3—|—F3} =0

Fg — matrix that depends on geometrlc functlons and M2_>2

MTH and Sharpe (2014)

ja ja 1 !
Mo 1 F |
(nﬁwLS 2wL3 1+ My G 2L

|

b3 =




Quantization condition

At fixed (L, ]3) finite-volume energies are solutions to

Fg — matrix that depends on geometrlc functlons and M2_>2

MTH and Sharpe (2014)

| F F 1
' = Mo 1 F
l (/ 6w > 2wL3 1+ ./\/lg LG 2L

| These are aII matrices with indices

| momentum of angular momentum F and G are geometric functions
L one Pa2r7tTl%e 2 of the other two MQ,L depends on F and M2
f = — g, m




Relating Kq¢ 3 to M
First we modify C'1,(F, ﬁ) to define 1M 3




Relating /Cyr 3 to M3

First we modify C(E, P) to define M 3
1. Amputate interpolating fields

= @ -

________________________

_________________________



Relating /Cyr 3 to M3

First we modify C(E, P) to define M 3
1. Amputate interpolating fields

2. Drop disconnected diagrams

® -
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Relating /Cyr 3 to M3

First we modify C(E, P) to define iM, 3
1. Amputate interpolating flelds

2. Drop disconnected diagrams
3. SjMM&E\‘&z@.

Muaa=5{ @+ @@ +




Relating Kq¢ 3 to M

Combined with our earlier analysis |
this gives a matrix equation Mps=35|DrL+ Ly RrL

Kgf,lzs + F3

L, =XF3, Rp=F3X,
Dr = _X[F3 _F3‘G—>0]X

~1
with the “amputation matrix” Xx = u
2wL3

e e et ™

MTH and Sharpe (2015)



Relating /Cyr 3 to M3

Combined with our earlier analysis 1
this gives a matrix equation Mps=35|DrL+ Ly RrL

K(;f,13 + F3

L, =XF3, Rp=F3X,
Dr = _X[F3 _F3‘G—>0]X

~1
with the “amputation matrix” Xx = u
2wL3

R S —— T

With this analytic relation in hand we can...
(a) Set ' — F + ie, (b)Send L. — 00, (c) Send ¢ — 0.

MTH and Sharpe (2015)



Relating Kq¢ 3 to M

Combined with our earlier analysis i 1 ]
this gives a matrix equation Mps=8|Dr+Lr—= RrL
i de,:s + I3 )
iML,3_>358{ ++-~
+ O g+ OO g . B gg - L, =XF;, Rp=F3X,

Dr = _X[F3 _F3‘G—>0]X

~1
with the “amputation matrix” Xx = F
2wL3

With this analytic relation in hand we can...
(a) Set ¥ — FE + i€, (b)Send L — 00, (c) Send ¢ — 0.

Leads to an integral equation for the scattering amplitude
X X
M3(E*) = I|Kag3(E*), Ms)

Fixed total energy, manifestly convergent, on-shell only, no reference to EFT,
takes care of unitarity and singularities, useful independent of finite-volume physics?

MTH and Sharpe (2015)
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¢ Meaning for three-to-three scattering is clear



Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear
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Aside: Non-interacting states (Mo = M3 =0)

X

Egon-int (L) = w1 + wo + w3

= 9 Wi = \/m2—|—47r2n3/L2
>4O T —————t
=

= 3.5
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Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear

@Mgzsl + +]

Aside: Non-interacting states (My = M3 =0)

5.0 .
§ Epe"™(L) = w1 + w2 + w3

= \/m2 + 472n? /L2
T

(nf, n3,n3) = (0,0,0)

5 6 7 3
For mL = 4, first excited mL
state is already relativistic
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D 2T
= — ) =~2.46
m? (mL)
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Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear

@Mgzsl + +]

Aside: Non-interacting states (My = M3 =0)

Q

E?l;lon-int (L) = w1 + wo + w3

= \/m2 + 472n? /L2
e

Why are these states clustered?
Accidental NR degeneracy!

2 .2 2 2
(n17n27n3) (O 0 O) EER(L) _ 3m—|— %(n% + l’l% + ng)
5 § 7 8
For mL = 4, first excited mL
state is already relativistic
2 2
D 21
—=|—] =24
m2 (mL) 0

Ww



Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics
¢ Meaning for three-to-three scattering is clear

R e
Aside: Non-interacting states (My = M3 =0)
% E?l;lon-int (L) — W 1+ Wo T W3
.

= \/m2 + 472n? /L2
e

2
11 (] ] 0)

Why are these states clustered?
Accidental NR degeneracy!

2 2
ey — (0,00 i ENR(L) =3m + %(n% +n3 +n3)
5 6 ' S~ 8‘ These two states are

degenerate in the NR theory
mL

For mL = 4, first excited e

state is already relativistic

2 2
D 27
— = —] =~2.46
m? (mL)

T ——————



Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics
¢ Meaning for three-to-three scattering is clear

R e
Aside: Non-interacting states (My = M3 =0)
% E?l;lon-int (L) — W 1+ Wo T W3
.

= \/m2 + 472n? /L2
e

112
Why are these states clustered?

Accidental NR degeneracy!

(n?,n2,n2) = (0,0,0) ’

s
E, (L) = (07 + 05 +n3)
. In fact we have already seen these clusters
5 6 5 ma = —20, mL =06
For ml = 4, first excited ml K
state is already relativistic 0
2 2 2 j
P m
m2 mL - | | |
L ——— e e B 3 4 5

E/m




Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics
¢ Meaning for three-to-three scattering is clear

oo e+ TS

Aside: Non-interacting states (Mo = M3 =0)

% E?r;on-int (L) = w1 + wo + w3

\/m2 + 4m2n? /L2

2
11 (] ] 0)

Why are these states clustered?
Accidental NR degeneracy!

2 2 2 5
5 6 ' S~ BI These two states are
degenerate in the NR theory

For mL = 4, first excited mL

state is already relativistic ,,
P (21)2%246 ‘ Is it safe to say that we needa
m?  \mL | relativistic approach?




Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear

= —s

—1/2

>0 \
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Q
3.0
e
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Now we turn on the interactions

1/F¥°(E,L,a) =0

ISO NlN
Fl —ng[——F FL
D

H = /(2wK2)+F3—|—GS

known functions

1/L expansion



Kips(E) = 0 solutions

¢ Provides a useful benchmark: Deviations measure three-particle physics

¢ Meaning for three-to-three scattering is clear

@'Mgzsl + +]

a4 =

E—

Can also accommodate large a
1/Fi*°(E, L, a) =0

. F, ~ 1~
FISO:_ __F F
3 L3”[3 "H Lp

H=1/(2wKs) + F, + G,

known functions

....... 1/L expansion



Kirs(E) = 0 solutions

Straightforward to vary a and to study large volumes

a= — _ a=—4 _ a= —2
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Straightforward to vary a and to study large volumes

a=—4

N
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Threshold expansion
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Kips(E) = 0 solutions

Straightforward to vary a and to study large volumes

a = —38 a = —4 a = —2
4.01 \\ NN\ 4.01 4.01
Threshold expansion
R requires very large L | -
=
S
X
3.0 — 0 ——————== 3.0
/ - / i getting better and better
. . . . . e
5 10 15 20 5 10 15 20
- \ 1\ 4.0 O 1/2\
=
S
o —
3.0 == 3.0 ===
/ / repulsive works as well
I/ | | | | | . . . M
5 10 15 20 5 10 15 20 5 10 15 20
mL mL

mL



iSO
K3

4.01

\

a = —8
\\\\\\

Threshold expansion

requires very large L

10 15

3

(E) = 0 solutions
Straightforward to vary a and to study large volumes

4.01

3.9

a=—4

4

15

3

4.01

3.9°

a = —2

N

and better

repulsive works as well
M
5 10 15 20
mL

But, to avoid poles in [Co, we must require a < 1/m




