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Analytic continuation reveals that the bump 
corresponds to a pole in the complex plane

ER = MR + i�R/2

A resonance is a bump in |M(E)|2 / |e2i�(E) � 1|2 / sin2 �(E)
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This bridges the gap between 
bound states and resonances

Resonances vs. bound states



In fact, resonance poles appear on “unphysical sheet”

Resonances vs. bound states
A resonance is a bump in |M(E)|2 / |e2i�(E) � 1|2 / sin2 �(E)
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Transition amplitudes

Resonant form factors From resonances to high-energy scaling

Towards a detailed, first-principles understanding of resonances

E (GeV)

Measure how photons and other currents 
mediate exotic resonance production

Predict how the currents couple to the 
resonance

Explore the transition from resonance 
to high energy regimes

|Resi = a| i+ b| i+ c| i
taken from Halzen and Martin

SLAC

The aim is to determine all such observables in a rigorous, 
systematically-improvable manner, from first principles QCD

Scattering

Determine pole positions in S-matrix entries 

Residues measure the couplings to multi-
particle states
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h0|Ñ(p01)⇡̃(p

0
2)⇡̃(p

0
3) Jµ(x) Ñ(P )|0i
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amputate and go on-shell
hN⇡⇡, out|Jµ(x)|Ni =

N⇤

The difficulty with resonances

Instead we can only access

finite-volume energies and matrix elements
(labels in quotes indicate quantum numbers)

HQCD|n, Li = |n, LiEn(L) hn, L, “N⇡⇡”|Jµ(x)|“N”, Li



Not possible to directly calculate

⇢

h⇡⇡|⇡⇡i hN⇡|Jµ|Ni hN⇡⇡|Jµ|Ni
multi-particle in- and outstates

Requires real, physical energies and infinite volume
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Large body of formal developments spanning many decades

Resonant form factors From resonances to high-energy scaling

E0(L)

E1(L)

E2(L)

h2|J |2i

Transition amplitudes

E0(L)

E1(L)
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Scattering
 Lüscher (1986,1991)  o  Rummukainen, Gottlieb (1995) 

Li, Liu (2004)  o  Feng, Li, Liu (2004) 
Detmold, Savage (2004)  o Kim, Sachrajda, Sharpe (2005) 
Christ, Kim, Yamazaki (2005)  o  Bernard, et. al. (2008) 
Davoudi, Savage (2011)  o  Polejaeva, Rusetsky (2012) 
Leskovec, Prelovsek (2012)  o  Göckeler et al. (2012) 

MTH, Sharpe (2012)  o  Briceño, Davoudi (2012,2013) 
Briceño (2014)  o  MTH, Sharpe (2015,2016) 

Briceño, MTH, Sharpe (2017)  
Hammer, Pang, Rusetsky (2017)  o  Mai, Döring (2017) 

Döring, et al. (2018)    

 Lellouch, Lüscher (2000)  
Kim, Sachrajda, Sharpe (1995)  

Christ, Kim, Yamazaki (2005)  o  Meyer (2011)  
MTH, Sharpe (2012)  o  Briceño, Davoudi (2012) 
Bernard et al. (2012)  o  Agadjanov et al. (2014) 

Briceño, MTH, Walker-Loud (2015)  
 Briceño, MTH (2015)

Briceño, Davoudi (2012)  o  Bernard et al. (2012) 
Detmold, Flynn (2015)  o  Briceño, MTH (2016)

Liu (2017)  o  Hashimoto (2017) 
Chambers (2017)  o  MTH, Meyer, Robaina (2017)
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Work in continuum field theory throughout
Assume lattice effects are small and accommodated elsewhere

L

L

L

E0(L)

E1(L)

E2(L)

e�mL    large enough to ignoreL

time direction infinite

periodic boundary conditions

~p 2 (2⇡/L)Z3

cubic, spatial volume (extent    )L

1. Include all interactions 
Generic relativistic QFT

2. no power-counting scheme

Not possible to directly calculate 
scattering observables to all orders

But it is possible to derive 
general, all-orders relations 
to finite-volume quantities

Basic set-up



In the case of two-to-two scattering 
Lüscher’s formalism + extensions give a general mapping
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Varying           gives more constraints on functions of   
Requires that energy is below lowest three-particle threshold 
Derivation ignores (drops) suppressed volume effects (           ) 
Only useful if one truncates angular momentum space 

e�M⇡L

E⇤2 = E2 � ~P 2E, ~P

 Lüscher, Rummukainen, Gottlieb, Li, Liu, Feng, Detmold, Savage, Kim, Sachrajda, Sharpe, Christ, Kim, Yamazaki, Bernard, 
Döring, Lage, Meißner, Rusetsky, Davoudi, Savage, Polejaeva, Leskovec, Prelovsek, Göckeler, Horsley, Rakow, Schierholz, 

Zanotti, MTH, Sharpe, Briceño, Davoudi
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Our aim is to extend the derivation for arbitrary  
relativistic two- and three-particle systems

E1(L)

E2(L)

E3(L)

Potential applications… 
Studying three-particle resonances 

Calculating weak decay amplitudes and form factors 

Determining three-body interactions 

!(782) ! ⇡⇡⇡

N(1440) ! N⇡, N⇡⇡

K ! ⇡⇡⇡

N⇤

NNN three-body forces needed as EFT input 
for studying larger nuclei and nuclear matter



Model- & EFT-independent relation between  
finite-volume energies and relativistic two-and-three particle scattering

Current status

Requires energy is below four-particle production threshold 
Derivation ignores (drops) suppressed volume effects (           ) 
Only useful if one truncates angular momentum space

e�M⇡L

MTH, Sharpe (2015),(2016)  o  Briceño, MTH, Sharpe (2017) 
see also… Hammer, Pang, Rusetsky (2017)  o  Mai, Döring (2017)  o  Döring, et al. (2018)    
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Requires energy is below four-particle production threshold 
Derivation ignores (drops) suppressed volume effects (           ) 
Only useful if one truncates angular momentum space 

Result relies on an intermediate three-particle quantity 

Assumes no sub-channel two-particle resonances 

Derivation assumes identical scalar particles

Current status

e�M⇡L

E0(L)

E1(L)

E2(L)
Kdf,3

Kdf,3Kdf,3

Kdf,3 M3

M3 M3

M3

Extension to remove this restriction is nearing completion

Model- & EFT-independent relation between  
finite-volume energies and relativistic two-and-three particle scattering

MTH, Sharpe (2015),(2016)  o  Briceño, MTH, Sharpe (2017)



We are also exploring the result numerically to quantitatively understand the 
relation between finite- and infinite-volume three-particle physics

Toy numerics
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Briceño, MTH, Sharpe (tomorrow)

Model of a 3-particle resonance



Impose a Z2 symmetry 

Set total momentum to zero 

Take two-to-two scattering to be dominated by s-wave scattering length 

Take three-to-three scattering to be “isotropic”

Simplifications (for numerical investigation)
M3

K
df,3(E

2; p
1

· p
2

, p
1

· p0
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, · · · ) ⇡ Kiso
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unitarity LO threshold 
expansion

s-wave dominance
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Unitary bound state
The parameters                     ,                                    lead to a shallow bound statea = �104 Kiso
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We are also exploring the result numerically to quantitatively understand the 
relation between finite- and infinite-volume three-particle physics

Toy numerics
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Briceño, MTH, Sharpe (tomorrow)

Model of a 3-particle resonance



To do list…

E0(L)

E1(L)

E2(L)

Remove the restriction on two-particle sub-resonances 

Extend the mapping to multiple species and channels 
Develop code to explore the relations (especially beyond isotropic) 
Understand unphysical artifacts that arise for extreme values of Kdf,3 

Derive the formalism for three-particle transition amplitudes 
Perform the first three-particle LQCD calculation

First derivation is complete, checking and writing-up
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The big picture…

Resonant form factors From resonances to high-energy scaling

Stay tuned for the first resonant 
form factor from LQCD!
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A new idea we are starting to test
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Two-particle sector is reaching maturity  
(see Raul Briceño and John Bulava’s talks)

The three-particle frontier is around the corner
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We begin by considering 
identical scalar particles

For now we turn off two-to-three scattering using a symmetry

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities

Three-to-three amplitude has more degrees of freedom

Certain external momenta 
 put this on-shell!

= + · · ·

2 degrees of freedom

12 momentum  
     components

-10 Poincaré generators

8 degrees of freedom

18 momentum  
     components

-10 Poincaré generators



How can we extract a singular, eight-coordinate function using 
finite-volume energies?

Spectrum depends on a modified quantity with singularities removed

Kdf,3 6�

Degrees of freedom encoded in an extended matrix space 

~k, `,m

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)

BOOST

(    is restricted to finite-volume momenta)~k

Smooth, real function (easier to extract)Same degrees of freedom as        .M3

Relation to           is known (depends only on on-shell          )M2M3

df stands for “divergence free”



At fixed          , finite-volume energies are solutions to(L, ~P )

detk,`,m
h
K�1

df,3 + F3

i
= 0

matrix that depends on geometric functions and            .F3 ⌘ M2!2

MTH and Sharpe (2014)
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� �
These are all matrices with indices

~k =
2⇡~n

L
`,m

momentum of 
one particle

angular momentum 
of the other two⌦

F and G are geometric functions
M2,L M2depends on F and

F3 =
F

6!L3
� F

2!L3

1

1 +M2,LG
M2,LF

All of the complication is buried inside F3
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Quantization condition



CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating          to     Kdf,3 M3

First we modify…………    to defineCL(E, ~P ) iML,3



CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating          to     Kdf,3 M3

1. Amputate interpolating fields
First we modify…………    to defineCL(E, ~P ) iML,3



CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating          to     Kdf,3 M3

First we modify…………    to defineCL(E, ~P ) iML,3
1. Amputate interpolating fields 
2. Drop disconnected diagrams



Relating          to     Kdf,3 M3

1. Amputate interpolating fields 
2. Drop disconnected diagrams 
3. Symmetrize

iML,3!3 ⌘ S
⇢

�+ · · ·

+ + + · · ·

+ + · · ·

+ + + · · ·+
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First we modify…………    to defineCL(E, ~P ) iML,3
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With this analytic relation in hand we can… 
(a) Set                        ,  (b) Send               ,  (c) Send               .E ! E + i✏ L ! 1 ✏ ! 0+

M3(E
⇤) = I

⇥
Kdf,3(E

⇤),M2

⇤Leads to an integral equation for the scattering amplitude

Fixed total energy, manifestly convergent, on-shell only, no reference to EFT, 
takes care of unitarity and singularities, useful independent of finite-volume physics?

MTH and Sharpe (2015)
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In fact we have already seen these clusters
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Is it safe to say that we need a 
relativistic approach?
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But, to avoid poles in        , we must requireK2 a < 1/m


