Conventional quarkonia: few experimental ideas

Umberto Tamponi
tamponi@to.infn.it
INFN - Sezione di Torino

Bound states in strongly coupled systems GGI, Firenze, 02/12/2018

Disclaimer

\rightarrow I am part of the Belle/Belle II collaborations
\rightarrow I've mostly done bottomonium physics in my life
\rightarrow This talk contains lots of personal opinions

Disclaimer

$$
\begin{aligned}
& \rightarrow \text { I am part of the Belle/Belle II collaborations } \\
& \rightarrow \text { I've mostly done bottomonium physics in my life } \\
& \rightarrow \text { This talk contains lots of personal opinions }
\end{aligned}
$$

I believe that conventional bottomonia are (experimentally) more important than conventional charmonia right now:
\rightarrow More states
\rightarrow More transitions to be explored
\rightarrow More almost unexplored topics
\rightarrow Limited time and chances to actually do this physics

Charmonium: experimental tools

Charmonium is experimentally easy and accessible
\rightarrow Direct production in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions $\underset{\text { B }}{ }$ B \rightarrow Production in $\mathrm{B} \rightarrow \mathrm{K} \mathrm{c} \mathrm{\bar{c}} \mathrm{LHCb} \underset{\mathrm{LB}}{ }$
\rightarrow Photon-photon scattering $\gamma \gamma^{*} \rightarrow(c \bar{c})$

\rightarrow Double Charmonium $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\mathrm{cc})(\mathrm{c} \overline{\mathrm{c}})$

\rightarrow Prompt production

\rightarrow Direct production in $\bar{p} \bar{\square}$ (???)
\rightarrow A future super-tau-charm factory (???)

Bottom line: Charmonium will still be fully covered in the next 15 yrs.

Bottomonium: experimental tools

Bottomonium is much less accessible

\rightarrow Direct production in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions

\rightarrow Prompt production

Bottom line: after Belle II, only the LHC experiments will cover bottomonia with strong limitations

Production is not everything

$\mathrm{e}^{+} \mathrm{e}^{-}$machines

\rightarrow Triggers are quite open
\rightarrow High efficiency / Sensitive to very low momentum
\rightarrow Unique measurements (double charmonium, $\gamma \gamma^{*} \rightarrow \mathrm{cc}$)
\rightarrow Initial states is always a 1^{-1} quarkonium or a B meson
\rightarrow CM energy is a limiting factor

Production is not everything

Hadronic machines

\rightarrow Produce any quantum numbers
\rightarrow CM energy is not an issue
\rightarrow Unique measurements (double Y , polarization, cross sections...)
\rightarrow Triggers are a limiting factor
\rightarrow No inclusive analysis: only $\mu \mu, \mathrm{pp} \ldots$
\rightarrow (No soft photons, no neutral mesons ...)

Production is not everything

Hadronic machines

\rightarrow Produce any quantum numbers
\rightarrow CM energy is not an issue
\rightarrow Unique measurements (double Y , polarization, cross sections...)
\rightarrow Triggers are a limiting factor
\rightarrow No inclusive analysis: only $\mu \mu$, pp...
\rightarrow (No soft photons, no neutral mesons ...)
Rule of thumb for bottomonia:
\rightarrow Yes to $\pi \pi / \gamma+\mu \mu$ final states

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{nS}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S}) \\
& \chi_{\mathrm{b}}(\mathrm{nP}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})
\end{aligned}
$$

\rightarrow No to multi-hadrons final states

Transitions pattern circa year 2005

Transitions pattern year 2016

$$
Y(n S) \rightarrow \gamma \eta_{b}(1 S)
$$

Is Belle II going to take bottomonium data?

The collaboration considers $\mathrm{Y}(3 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{~S})$ runs as part of its physics program from the very beginning
\rightarrow Still, the competition with LHCb on CPV is tough
\rightarrow Nothing comes for free: a document for the Y(3S) run should be submitted by Feb. 2019

The ground states parameters

The η_{c} mass conundrum

All the fits are performed using a Breit-Wigner shape

The η_{c} mass conundrum

Non-M1 naive average

M1 naive average

$$
\frac{d \Gamma(\omega)}{d \omega}=\frac{4}{3} \alpha \frac{e_{\mathrm{c}}^{2}}{m_{\mathrm{c}}^{2}} \omega^{3}|M|^{2} \mathrm{BW}(\omega) \longrightarrow \frac{d \Gamma(\omega)}{d \omega} \sim \omega^{3} f(\omega) \mathrm{BW}(\omega)
$$

What is the proper theoretical shaper for this dumping factor?

The η_{c} width conundrum

What do I understand from this?

\rightarrow NNLO is still not enough
\rightarrow Is NRQCD converging fast enough?
\rightarrow The problem is not in the experimental resolution

Bottom line:

\rightarrow New data may be useful, but the problem with the η_{c} seems to be in the theoretical models rather than in the lack of good data

The $\eta_{b}(1 S)$ case

No specific decay of the $\boldsymbol{\eta}_{b}(1 S)$ has been observed so far
\rightarrow No (known) way to perform an exclusive reconstruction
\rightarrow Can be studied only at B-factories looking at the
photon spectrum in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons © $\mathrm{Y}(2 \mathrm{~S}, 3 \mathrm{~S})$

The $\eta_{b}(1 S)$ case

...or by looking at the photon spectrum
in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\pi \pi, \eta) \gamma+$ hadrons @ $\mathrm{Y}(4 \mathrm{~S}, 5 \mathrm{~S})$

PRL 109232002

The $\eta_{b}(1 S)$ case

\rightarrow No treatment of the dumping factor
\rightarrow No full reconstruction!

The $\eta_{b}(1 S)$ case

\rightarrow The analysis with conversions somehow further confuses the situation

The η_{b} (1S) case

Quite some room for experimental improvements

The $\eta_{b}(1 S)$ at Belle II

Luminosities and number of events

Experiment	$\Upsilon(1 S)$	$\Upsilon(2 S)$	$\Upsilon(3 S)$	$\Upsilon(4 S)$	$\Upsilon(5 S)$	$\Upsilon(6 S)$	$\frac{\Upsilon(n S)}{\Upsilon(4 S)}$
CLEO	$1.2(21)$	$1.2(10)$	$1.2(5)$	$16(17.1)$	$0.1(0.4)$	-	23%
BaBar	-	$14(99)$	$30(122)$	$433(471)$	R_{b} scan	R_{b} scan	11%
Belle	$6(102)$	$25(158)$	$3(12)$	$711(772)$	$121(36)$	5.5	23%
BelleII	-	-	$300(1200)$	$5 \times 10^{4}\left(5.4 \times 10^{4}\right)$	$1000(300)$	$100+400($ scan $)$	3.6%

$$
\begin{aligned}
& \mathrm{Y}(3 S) \rightarrow \gamma \eta_{b}(1 S): \sim 200 k \text { evts (} \sim 5000 \text { with conversion!) } \\
& \mathrm{Y}(3 S) \rightarrow \pi \pi \mathrm{Y}(2 S) \rightarrow \pi \pi \gamma \eta_{b}(1 \mathrm{~S}): 3000 \text { evts, no ISR background } \\
& \mathrm{Y}(4 \mathrm{~S}) \rightarrow \eta h_{b}(1 \mathrm{P}) \rightarrow(\gamma \gamma) \gamma \eta_{b}(1 \mathrm{~S}): 2.5 \text { Million events } \\
& \mathrm{Y}(5 \mathrm{~S}) \rightarrow \pi \pi \mathrm{h}_{\mathrm{b}}(\mathrm{nP}) \rightarrow \pi \pi \gamma \eta_{b}(1 \mathrm{~S}, 2 \mathrm{~S}): 125 \mathrm{k} \text { each }
\end{aligned}
$$

Ground state exclusive decays

Phys. Rev. Lett. 119, 252001 (2017)

With $50 \mathrm{ab}^{-1}$ of $\mathrm{Y}(4 \mathrm{~S})$ Belle II can measure $\eta_{\mathrm{b}}(1 \mathrm{~S}) \rightarrow \gamma \gamma$ with $\sim 20 \%$ uncertainty

Di-pion transitions

What we are missing:
$\mathrm{Y}(5 \mathrm{~S}) \rightarrow \eta \mathrm{hb}(1 \mathrm{P})$
$Y(5 S) \rightarrow \eta \mathrm{hb}(2 \mathrm{P}) \quad$ Belle II
$\mathrm{Y}(4 \mathrm{~S}) \rightarrow \pi \pi \mathrm{hb}(1 \mathrm{P})$
$\chi_{b}(3 \mathrm{P}) \rightarrow \omega \mathrm{Y}(1 \mathrm{~S}) \quad$ Belle II (?)
$\chi_{b}(2 \mathrm{P}) \rightarrow \eta \eta_{b}(1 \mathrm{~S})$ Belle II (?)
$\begin{array}{ll}Y(1 D) \rightarrow \eta Y(1 S) & \text { Belle II } \\ Y(3 S) \rightarrow \eta\end{array}$
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \boldsymbol{\eta} \mathrm{Y}(1 \mathrm{~S}) \quad$ Belle II
All the hadronic transitions from
Spin singlets states are unknown
\rightarrow Any theoretical prediction is welcome!

Di-pion transitions: a family picture

PRD76 072001 (2007)

0.280 .290 .30 .310 .320
$M_{\pi \pi}=\sqrt{q^{2}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

PoS (hadron2017) 040

Phys.Rev. D91 (2015) no.7, 072003

Di-pion transitions

Exotic stats contribute to the hadronic and radiative transitions from narrow quarkonia
Y.H. Chen et al, PRD93 (2016) 034030

Di-pion transitions

Exotic stats contribute to the hadronic and radiative transitions from narrow quarkonia
Y.H. Chen et al, PRD93 (2016) 034030

To-do list

Full amplitude analysis of
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S}), \mathrm{Y}(2 \mathrm{~S})$

$\chi_{b}(2 \mathrm{P}) \rightarrow \pi \pi \chi_{b}(1 \mathrm{P})$

LHCb and CMS could contribute here!

Two (or three) ideas to exploit the $Y(n S)$ annihilations

$Y(n S)$ annihilations

$\mathrm{Y}(\mathrm{nS})$ annihilations into hadrons are quite peculiar and not very well know

1) Baryon and strangeness enhancement

PRD76 012005 (2007)

CLEO absolute yields

Particle Type	$(\mathrm{ggg}) /(q \bar{q})[$ Data]
Λ	$(873600 \pm 1400) /(107300 \pm 600)$
p	$(1399800 \pm 1200) /(295900 \pm 500)$
\bar{p}	$(1359500 \pm 1200) /(285400 \pm 500)$
ϕ	$(227900 \pm 1600) /(48300 \pm 800)$
$f_{2}(1270)$	$(193000 \pm 4000) /(66500 \pm 1800)$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})$ is a
"low momentum hyperon factory"

$Y(n S)$ annihilations

$\mathrm{Y}(\mathrm{nS})$ annihilations into hadrons are quite peculiar and not very well know

1) Baryon and strangeness enhancement

PRD76 012005 (2007)

1) Production of nuclei

Phys.Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3 S) \rightarrow \bar{d} X)$	$\left(2.33 \pm 0.15_{-0.28}^{+0.31}\right) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2 S) \rightarrow \bar{d} X)$	$\left(2.64 \pm 0.11_{-0.21}^{+0.26}\right) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1 S) \rightarrow \bar{d} X)$	$\left(2.81 \pm 0.49_{-0.24}^{+0.20}\right) \times 10^{-5}$
$\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)[\sqrt{s} \approx 10.58 \mathrm{GeV}]$	$\left(9.63 \pm 0.41_{-1.01}^{+1.17}\right) \mathrm{fb}$
$\frac{\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)}{\sigma\left(e^{+} e^{-} \rightarrow \text { Hadrons }\right)}$	$\left(3.01 \pm 0.13_{-0.31}^{+0.37}\right) \times 10^{-6}$

Anti-deuteron is 10 times more abundant in $\mathrm{Y}(\mathrm{nS}) \rightarrow$ ggg than in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ at the same energy

Idea nr. 1: Y(nS) for exotic charmonia

Lots of observation of exotica, but quite few completely independent confirmations
\rightarrow Only X(3872) has been seen in prompt production (in $\overline{\mathrm{p}}$ and pp collisions)

Based on Phys. Rev. D 93, 112013 [Belle]

Idea nr. 1: Y(nS) for exotic charmonia

A tentative comparison between Belle and CMS.

Belle II prospects with $300 \mathrm{fb}^{-1}$:
\rightarrow 3-5 \times sensitivity in inclusive production from $Y(3 S)$

$$
\mathrm{B}[\mathrm{Y}(\mathrm{nS}) \rightarrow \mathrm{X}(3872)+\mathrm{had}] / \mathrm{B}\left[\mathrm{Y}(\mathrm{nS}) \rightarrow \psi^{\prime}+\mathrm{had}\right]>7 \%
$$

$\rightarrow 10-15 \times$ sensitivity in double charmonium

Idea nr. 1: Y(nS) for exotic charmonia

BaBar measured a reasonably high production of D^{*} from $\mathrm{Y}(1 \mathrm{~S})$ annihilations
$\mathrm{B}\left[\mathrm{Y}(\mathrm{nS}) \rightarrow \mathrm{D}^{*}+\mathrm{X}\right]=2.5 \%$

Belle II will have:
$\rightarrow \sim 10 x$ the data
\rightarrow Better efficiency at low momenta

FIG. 3: Reconstruction efficiency for the decay chain $\Upsilon(2 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S), \Upsilon(1 S) \rightarrow D^{* \pm} X$ as a function of the scaled $D^{* \pm}$ momentum x_{p}.

Idea nr. 1: Y(nS) for exotic charmonia

BaBar measured a reasonably high production of D^{*} from $\mathrm{Y}(1 \mathrm{~S})$ annihilations

$$
\mathrm{B}\left[\mathrm{Y}(\mathrm{nS}) \rightarrow \mathrm{D}^{*}+\mathrm{X}\right]=2.5 \%
$$

- Production at Colliders speaks against extended objects;
- using Pythia to estimate the probability to find a D-Dbar pair in the relevant phase space, factors of 10^{-2} with respect to the X (3872) cross section measured by CDF ($\sim 30 \mathrm{nb}$) are found.
L. Maiani's talk

\rightarrow We can aim for associated DD* and (maybe) DD* correlations
\rightarrow And if we actually observe also the X(3872)...

Idea nr. 2: Bottomonium for astrophysics

$\overline{\mathrm{d}}$ detection in cosmic rays is considered since long a probe

for low or intermediate mass WIMPs

\rightarrow it's kinematically easier to produce a d from $\chi \chi$ annihilation than from SM processes

Nuclear uncertainties
$\rightarrow \overline{\mathrm{p}}$ and $\overline{\mathrm{n}}$ production rates rel. uncertainty ~ 10
$\rightarrow \overline{\mathrm{d}}$ production model rel. uncertainty $\sim \sim 50-200$

Astrophysical uncertainties
\rightarrow Galactic density profile

$$
\text { rel. uncertainty } \sim 20
$$

\rightarrow Transport models

$$
\text { rel. uncertainty } \sim 500
$$

Idea nr. 2: Bottomonium for astrophysics

\rightarrow Anti-deuteron production is described by p-n coalescence Aramaki et al. Phys. Rept. 618 (2016) 1-37 models tuned on the HEP data

$$
\frac{\mathrm{d} N_{\bar{d}}}{\mathrm{~d} T_{\bar{d}}}=\frac{\sum_{d}^{3}}{6} \frac{m_{\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^{2}+2 m_{\bar{d}} T_{\bar{d}}}} \frac{\mathrm{~d} N_{\bar{n}}}{\mathrm{~d} T_{\bar{n}}} \frac{\mathrm{~d} N_{\bar{p}}}{\mathrm{~d} T_{\bar{p}}}
$$

\rightarrow Most recent data are from Alice (large final state, MC-driven correction)
\rightarrow Strong need to further constrain the d production model (new AMS-02 data are coming, few $\overline{\mathrm{He}} 3$ could have been observed)

Idea nr. 2: Bottomonium for astrophysics

Use the Belle II data to investigate the basic mechanism for d production
\rightarrow No final state interaction (complementarity with Alice)
\rightarrow Better particle identification than Belle and BaBar
\rightarrow Collect $\sim 30000 \overline{\mathrm{~d}}$, with dedicated tracking and PID
\rightarrow Is coalescence really the whole story?

Need for theoretical models!
\rightarrow d production models are made for HIC!

Idea nr. 3: Hyperon-Hyperon interactions

Two results from Belle:

Near-threshold enhancement in exclusive Y annihilations

No sign of weakly bound H-dibaryon

Rough extrapolation for $300 \mathrm{fb}^{-1} \mathrm{Y}(3 \mathrm{~S})$ ~ 60 Million events with one Λ or $\bar{\Lambda}$ ~3 Million events with one $\Lambda \bar{\Lambda}$ pair
\rightarrow High statistics study near threshold enhancement
\rightarrow Stable H di-baryon in missing mass
\rightarrow Extract the $\Lambda \Lambda$ potential from correlations?
\rightarrow Need for theoretical input on the $\Lambda \Lambda$ correlations in a small volume

Conclusions

This talk was extremely incomplete
\rightarrow Lots of topics has been neglected
The next years can represent our last chance to fully investigate the bottomonium spectrum
\rightarrow Again, lots of topics has been neglected
Hadronic annihilations are a bridge between sectors of low energy QCD that we should exploit

Conclusions

This talk was extremely incomplete
\rightarrow Lots of topics has been neglected
The next years can represent our last chance to fully investigate the bottomonium spectrum
\rightarrow Again, lots of topics has been neglected
Hadronic annihilations are a bridge between sectors of low energy QCD that we should exploit

Backup

The uniqueness of quarkonia: the X (3915) saga

Belle 2017: New analysis of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathrm{D}^{0} \overline{\mathrm{D}}^{0}: \mathbf{X}(\mathbf{3 8 6 0})$

X(3915)
X(3860)

1) Dominant decay to $D^{0} \bar{D}^{0}$
2) $\mathrm{Be} 80-120 \mathrm{MeV}$ below $\chi_{\mathrm{cJ2}}(2 \mathrm{P})$
3) $\mathcal{B}\left(\chi_{c 0}^{\prime} \rightarrow \omega J / \psi\right)<7.8 \%$.

The low-energy radiative transitions

The M1 radiative transition $\Upsilon(1 S) \rightarrow \eta_{b}(1 S) \gamma$ is the unique electromagnetic decay of $\Upsilon(1 S)$ state, which has no experimental information until now.

This is going to be impossible unfeasible just a nightmare very challenging...
... This of course doesn't mean that we are never going to try do to this analysis

Y(3S): precision spectroscopy

Belle II

The components of the $\mathrm{Y}(1 \mathrm{D})$ triplet have not been disentagled yet

Yield per 10^{9} $Y(3 S)$ decays

- $2.4 \mathrm{k}^{3} \mathrm{D}_{1}$
- $19 \mathrm{k}^{3} \mathrm{D}_{2}$
- $6.8 \mathrm{k}^{3} \mathrm{D}_{3}$

Godfrey and Moats, PRD 92, 054034 (2015)

Belle II prospects with $300 \mathrm{fb}^{-1}$:
\rightarrow Separate the components of the 1D triplet
\rightarrow (not shown here) $\eta_{b}(1 S)$ line-shape measurement

Summary and readiness: bottomonium

Competition and complementarity

- No other experiment, running or planned, can address the open topics in bottomonium physics
- Belle II is the last chance we have to make further measurements
$->30$ unique papers with less than $1 a b^{-1}$ of data ($Y(3 S)$ and $Y(6 S)$ only)
CMS energy requirements
- Run at $\mathrm{Y}(3 \mathrm{~S})$ (200 MeV below nominal energy)
- Run at $\mathrm{Y}(6 \mathrm{~S})$ (460 MeV above nominal energy)
- Run at $\mathrm{Y}(5 \mathrm{~S})$ (300 MeV above nominal energy)

Luminosity
$-0.3 \mathrm{ab}^{-1}$ for $\mathrm{Y}(3 \mathrm{~S})$
$-0.1 a b^{-1}$ for $\mathrm{Y}(6 \mathrm{~S})$

- $1 \mathrm{ab}^{-1}$ for $\mathrm{Y}(5 \mathrm{~S})$ (to be used for Bs physics)
$-0.4 \mathrm{ab}^{-1}$ for scans (+ possibility for $20 \mathrm{fb}^{-1}$ in Phase II)
- These luminosity request are the minimal ones needed to achieve the bottomonium physics program. Any reduction would significantly compromise parts of it, in particular the new physics searches $\mathrm{Y}(3 \mathrm{~S})$

Triggers:

- Special trigger for $\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ invisible, under development

Summary and readiness: bottomonium

A possible run plan

- Only an hypothesis, still to be discussed with the accelerator group
- Devote the end of each year of data taking to non- $\mathrm{Y}(4 \mathrm{~S})$ physics (few weeks / year o average, at most)

The $\mathrm{Y}(3 \mathrm{~S})$ run would require (not including the time needed to change energy and assuming no changes in the luminosity):
\rightarrow few months at $0.5 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad(\sim$ May 2018)
\rightarrow few weeks at $3 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad(\sim$ May 2020)
\rightarrow few days at $8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad(\sim$ May 2022)
$\mathrm{Y}(3 \mathrm{~S})$ data should be preferably taken at low luminosity, to fully exploit the di-pion trigger for $\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ invisible

The $Y(6 S)$ scan would require ~ 2 months independently from the luminosity (40 points, $10 \mathrm{fb}^{-1}$ each)

The $\mathrm{Y}(6 \mathrm{~S})$ on-resonance would require few days. Possibly split it in $10 \mathrm{fb}^{-1}$ at the very beginning of phase III and the rest afterwards ?

Charmonium at Belle II

Competition and complementarity

- LHCb and BESIII run a parallel program in charmonium physics
- Competition for the vector states (BESIII) and for the $\mathrm{B} \rightarrow$ (cc) K (LHCb)
- Unique topics: double charmonium (cross section, absolute BF, spectroscopy),

$$
\gamma \rightarrow \mathrm{c} \bar{c} \quad \text { (form factors, spectroscopy) }
$$

CMS energy requirements

- The charmonium physics program is part of the $\mathrm{Y}(4 \mathrm{~S})$ physics program
- Double charmonium, $\gamma \gamma$ fusion and the ISR program can take place at any energy

Luminosity

- No tight requirement for $\gamma \gamma \rightarrow \mathrm{cc}$, precise results starting from $10 \mathrm{ab}^{-1}$
- As much as possible for double charmonium
- Crucial for ISR and $B \rightarrow \bar{c} \bar{K}$. Running 6 month/year would pose us significantly beyond BESIII and LHCb.

Triggers:

- No need for specific triggers, all the final states have several charged tracks

Software:

- ISR generators (PHOKARA, KKMC, BABAYAGA...) are part of the generator package
- No need for dedicated analysis or fitting tools

Charmonium in ISR

Golden Channels	$E_{c . m .}(\mathrm{GeV})$	Statistical error (\%)	Related $X Y Z$ states	
$\pi^{+} \pi^{-} J / \psi$	4.23	$7.5(3.0)$	$Y(4008), Y(4260), Z_{c}(3900)$	
$\pi^{+} \pi^{-} \psi(2 S)$	4.36	$12(5.0)$	$Y(4260), Y(4360), Y(4660), Z_{c}(4050)$	
$K^{+} K^{-} J / \psi$	4.53	$15(6.5)$	$Z_{c s}$	
$\pi^{+} \pi^{-} h_{c}$	4.23	$15(6.5)$	$Y(4220), Y(4390), Z_{c}(4020), Z_{c}(4025)$	
$\omega \chi_{c 0}$	4.23	$35(15)$	$Y(4220)$	

Belle II prospects:

\rightarrow At $50 \mathrm{ab}^{-1}$, Belle II would match BESIII on a wider spectrum
\rightarrow Line-shape of the $\mathrm{Y}(4260)$
\rightarrow Strange partner of the $\mathrm{Z}(3900)$ in KKJ / ψ
\rightarrow Cross sections of exclusive $(\mathrm{c} \overline{\mathrm{c}})+$ hadrons

Bottomonium at Belle II

Current samples in fb^{-1} (millions of events), and the proposal for Belle II

Experiment	$\Upsilon(1 S)$	$\Upsilon(2 S)$	$\Upsilon(3 S)$	$\Upsilon(4 S)$	$\Upsilon(5 S)$	$\Upsilon(6 S)$	$\frac{\Upsilon(n S)}{\Upsilon(4 S)}$
CLEO	$1.2(21)$	$1.2(10)$	$1.2(5)$	$16(17.1)$	$0.1(0.4)$	-	23%
BaBar	-	$14(99)$	$30(122)$	$433(471)$	R_{b} scan	R_{b} scan	11%
Belle	$6(102)$	$25(158)$	$3(12)$	$711(772)$	$121(36)$	5.5	23%
BelleII	-	-	$300(1200)$	$5 \times 10^{4}\left(5.4 \times 10^{4}\right)$	$1000(300)$	$100+400($ scan $)$	3.6%

- Narrow states spectroscopy (Y(1D), $\left.\chi_{b}(\mathrm{nP}) \ldots\right)$

- Exotica as virtual contributions to transitions

- Precision NRQCD test
- New Physics (DM / light higgs)
- Missing hadronic and radiative transitions
- Baryon physics (inc. correlations)
- Anti-nuclei production (with DM applications)
- Gluon fragmentation
- Inclusive charmonium production and $\mathrm{D} \overline{\mathrm{D}}$ correlations
- Bs physics
- Exotica discovery
- Precision Zb mass measurement
- Missing hadronic and radiative transitions
- Light meson spectroscopy in transitions

Accelerator requirements for bottomonium

Beam Transport Final Focus

$Y(6 S)$ on-resonance run: conventional

$\rightarrow Y(5 S)-Y(6 S)$ are portals to the missing narrow states
$\rightarrow \mathrm{Y}(5 \mathrm{~S}) \rightarrow \eta \mathrm{Y}(1 \mathrm{D})$ is the largest $\mathrm{Y}(5 \mathrm{~S})$, single-meson transition
\rightarrow The conventional spectrum gets contributions from the couple channel effect (again, light quarks...)

Mod. Phys. Lett. A 32, 1750025 (2017)

Name	L	S	$J^{P C}$	Emitted hadrons [Threshold, $\left.\mathrm{GeV} / c^{2}\right]$
$\eta_{b}(3 S)$	0	0	0^{-+}	$\omega[11.12], \phi[11.36]$
$h_{b}(3 P)$	1	0	1^{+-}	$\pi^{+} \pi^{-}[10.82], \eta[11.09], \eta^{\prime}[11.50]$
$\eta_{b 2}(1 D)$	2	0	2^{-+}	$\omega[10.93], \phi[11.17]$
$\eta_{b 2}(2 D)$	2	0	2^{-+}	$\omega[11.23], \phi[11.47]$
$\Upsilon_{J}(2 D)$	2	1	$(1,2,3)^{--}$	$\pi^{+} \pi^{-}[10.73], \eta[11.00], \eta^{\prime}[11.41]$
$h_{b 3}(1 F)$	3	0	3^{+-}	$\pi^{+} \pi^{-}[10.63], \eta[10.90], \eta^{\prime}[11.31]$
$\chi_{b J}(1 F)$	3	1	$(2,3,4)^{++}$	$\omega[11.14], \phi[11.38]$
$\eta_{b 4}(1 G)$	4	0	4^{-+}	$\omega[11.31], \phi[11.55]$
$\Upsilon_{J}(1 G)$	4	1	$(3,4,5)^{--}$	$\pi^{+} \pi^{-}[10.81], \eta[11.08], \eta^{\prime}[11.49]$

Belle II goals:

\rightarrow Search for new, predicted, resonances
\rightarrow Use both single transitions and double cascades
\rightarrow Fill the remaining spectrum to measure the effects of the coupled channels contributions

Y(5S): Zb masses

The measurement of the Zb masses is foundamental to determine their nature: are they above or below the $\mathrm{B}^{(*)} \mathrm{B}^{*}$ thresholds?
\rightarrow Equivalent to the $\mathrm{X}(3872)$ mass problem: above or below the open threshold?

Current best estimate of the Zb location with respect to the thresholds:

$$
\begin{aligned}
\varepsilon_{B}\left(Z_{b}\right) & =\left(0.60_{-0.49}^{+1.40} \pm i 0.02_{-0.01}^{+0.02}\right) \mathrm{MeV} \\
\varepsilon_{B}\left(Z_{b}^{\prime}\right) & =\left(0.97_{-0.68}^{+1.42} \pm i 0.84_{-0.34}^{+0.22}\right) \mathrm{MeV}
\end{aligned}
$$

Belle II Goals:

\rightarrow Determine if the Zb are located above or below the open flavour threshold using $1 \mathrm{ab}^{-1}$ of $\mathrm{Y}(5 \mathrm{~S})$

$Y(5 S)-Y(6 S)$ scan

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{b}}(1 \mathrm{P})$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{b}}(1 \mathrm{P})$

Belle II scan goal:

\rightarrow Investigate the presence of a broad resonance at 10.750 GeV
$\rightarrow 10 \mathrm{MeV}$ wide steps, $10 \mathrm{fb}^{-1}$ each ($10 \times$ Belle scan)
$\rightarrow Y(5 S)$ and $Y(6 S)$ line-shapes in $R, R_{Y \pi \pi}$ and $R_{h \pi \pi}$
$\rightarrow \mathrm{Rb}$ decomposition ($\mathrm{BB}, \mathrm{BB}^{*}, \mathrm{~B}^{*} \mathrm{~B}^{*}, \mathrm{BB}^{*} \pi, \mathrm{~B}^{*} \mathrm{~B}^{*} \pi$, $\mathrm{BsBs} \ldots$)
\rightarrow Overall goal: settle the nature of the $\mathrm{Y}(5 \mathrm{~S})$

$Y(3 S):$ rare χ_{b} decays

 $\chi_{b}(2 \mathrm{P}) \rightarrow \tau \tau$ is sensitive to the presence of a CP-even light Higgs (as $\mathrm{B} \rightarrow \tau \tau, \mathrm{B} \rightarrow \tau \vee \ldots$)$$
\left.\begin{array}{l}
\mathrm{BR}^{H}\left(\chi_{b 0}(1 P) \rightarrow \tau \tau\right)=3.1 \times 10^{-13} \\
\mathrm{BR}^{H}\left(\chi_{b 0}(2 P) \rightarrow \tau \tau\right)=(1.9 \pm 0.5) \times 10^{-12}
\end{array}\right\} \times\left[1+\frac{M_{H_{125}}^{2} \tan ^{2} \beta}{M_{\mathrm{new}}^{2}-M_{\chi_{b 0}}^{2}}\right]^{2}
$$

Will only need $\left(M_{H_{125}} / M_{H_{\text {new }}}\right) \tan \beta \sim 30$ for $\mathcal{O}(100)$ signal events in $\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P) \rightarrow \gamma \tau \tau$

Results: $\Upsilon(3 S)$

Belle II goals:

$\rightarrow \chi_{\mathrm{b} 0}(2 \mathrm{P}, 1 \mathrm{P}) \rightarrow \gamma \tau \tau$ inclusive
$\rightarrow \chi_{\mathrm{b} 0}(2 \mathrm{P}, 1 \mathrm{P}) \rightarrow \gamma \tau \tau$ per exclusive final state
\rightarrow MC studies ongoing

$Y(1 S) \rightarrow$ invisible

$\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ invisible is well calculable in the SM

$$
\begin{gathered}
\frac{B R(Y(1 S) \rightarrow v \bar{v})}{B R\left(Y(1 S) \rightarrow e^{+} e^{-}\right)}=\frac{27 G^{2} M_{Y(1 S)}^{4}}{64 \pi^{2} \alpha^{2}}\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}=4.14 \times 10^{-4} \\
B R(Y(1 S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}
\end{gathered}
$$

Non-SM contributions from $\mathrm{Y}(1 \mathrm{~S}) \rightarrow \chi \chi$

BaBar, Phys. Rev. Lett. 103, 251801 (2009)

$Y(1 S) \rightarrow$ invisible

$\mathrm{Y}(1 \mathrm{~S}) \rightarrow$ invisible is well calculable in the SM

$$
\begin{gathered}
\frac{B R(Y(1 S) \rightarrow v \bar{v})}{B R\left(Y(1 S) \rightarrow e^{+} e^{-}\right)}=\frac{27 G^{2} M_{Y(1 S)}^{4}}{64 \pi^{2} \alpha^{2}}\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}=4.14 \times 10^{-4} \\
B R(Y(1 S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}
\end{gathered}
$$

Non-SM contributions from $\mathrm{Y}(1 \mathrm{~S}) \rightarrow \chi \chi$

Belle: Phys.Rev.Lett. 98 (2007) 132001

Source	$(\%)$
Track selection	5.6
π^{0} veto	2.4
Fisher discriminant	6.1
Other selection requirements	1.1
$\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)$	$7.6 \quad 4 \%$ in BaBar
Trigger efficiency	8.7
Fit bias	0.2
Statistics of control sample	1.4
$\mathcal{B}\left(\Upsilon \rightarrow \mu^{+} \mu^{-}\right)$	2.0
Total	14.7

Belle II prospects

$\rightarrow 10 \times$ dataset $\mathrm{w} /$ respect to BaBar
\rightarrow Sensitivity $\sim 1 \times 10^{-4}$ on the BF
\rightarrow Reduce the systematic with precision measurement of the pp and gg transitions
\rightarrow Trigger is crucial: capability to trigger on $2 p+$ missing energy depends on the BG levels and luminosity

Charmonium from B decay

3
Belle II
$\mathrm{B} \rightarrow \mathrm{K}(\mathrm{cc} \overline{\mathrm{c}}) \rightarrow \mathrm{K}($ hadrons, hadrons $+\mu \mu, \mathrm{n} \gamma+\mu \mu)$
\rightarrow Competitive in neutral transitions $\left(\mathrm{Xcc}_{\bar{c}} \rightarrow \eta, \pi^{0}, \omega \mathrm{~J} / \psi\right)$
\rightarrow Competitive for finals states with large multiplicities (h_{c} and η_{c})
\rightarrow Unique opportunity for inclusive measurements

Belle II prospects:

\rightarrow Discover the $\eta_{c 2}(2 D)$, last narrow charmonium missing in $B \rightarrow K \gamma h_{c}$ \rightarrow Comprehensive study of $\mathrm{B} \rightarrow \mathrm{K} D \overline{\mathrm{D}}, \mathrm{KD} \overline{\mathrm{D}}^{*}, \mathrm{KD}{ }^{*} \overline{\mathrm{D}}^{*}, \mathrm{~K} \overline{\mathrm{D}} \mathrm{D}^{* *}, \mathrm{~K} \overline{\mathrm{D}}^{*} \mathrm{D}^{* *}$

Y(3S): $\pi \pi$ scattering length

Q-value for $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi \pi$

At low energy the $\pi \pi$ interaction is described by two scattering lengths who vanish in the chiral limit:
$a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}+\mathcal{O}\left(m_{q}^{2}\right) \quad a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}+\mathcal{O}\left(m_{q}^{2}\right)$

Weinberg, PRL17,616(1966)

Using ChPT, theory predicts:

$$
a_{0}^{0}-a_{0}^{2}=0.265 \pm 0.004
$$

Colangelo, et al, PLB488,261(2000)

$\mathrm{Y}(2 \mathrm{~S})$ is only 50 MeV
Liu et al,EPJC73, 2284 (2013)

The η_{c} width conundrum

What do I understand from this?

\rightarrow NNLO is still not enough
\rightarrow Is NRQCD converging fast enough?
\rightarrow The problem is not in the experimental resolution

A funny coincidence: what happens if we take the measurements done with M1 naive fit?

1986
2000F BES
2003
BES

$$
\begin{aligned}
& J / \psi \rightarrow \gamma \mathrm{X}, \psi(2 S) \rightarrow \gamma \mathrm{X} \\
& J / \psi \rightarrow \gamma \eta_{c} \text { and } \psi(2 S) \rightarrow \gamma \eta_{c} \\
& J / \psi \rightarrow \gamma \eta_{c}
\end{aligned}
$$

