

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Conventional quarkonia: few experimental ideas

Umberto Tamponi *tamponi@to.infn.it* INFN - Sezione di Torino

Bound states in strongly coupled systems GGI, Firenze, 02/12/2018

- \rightarrow I am part of the Belle/Belle II collaborations
- \rightarrow I've mostly done bottomonium physics in my life
- \rightarrow This talk contains lots of personal opinions

- \rightarrow I am part of the Belle/Belle II collaborations
- \rightarrow I've mostly done bottomonium physics in my life
- \rightarrow This talk contains lots of personal opinions

I believe that **conventional bottomonia are (experimentally) more important than conventional charmonia** right now:

- \rightarrow More states
- \rightarrow More transitions to be explored
- \rightarrow More almost unexplored topics
- \rightarrow Limited time and chances to actually do this physics

Charmonium: experimental tools

Charmonium is experimentally easy and accessible

Bottom line: Charmonium will still be fully covered in the next 15 yrs.

Bottomonium: experimental tools

Bottomonium is much less accessible

 \rightarrow Direct production in e^+e^- collisions

Bottom line: after Belle II, only the LHC experiments will cover bottomonia with strong limitations

Production is not everything

e^+e^- machines

- \rightarrow Triggers are quite open
- \rightarrow High efficiency / Sensitive to very low momentum
- \rightarrow Unique measurements (double charmonium, $\gamma\gamma^* \rightarrow c\bar{c}$)
- ightarrow Initial states is always a 1⁻⁻ quarkonium or a B meson
- \rightarrow CM energy is a limiting factor

Production is not everything

Hadronic machines

- \rightarrow Produce any quantum numbers
- \rightarrow CM energy is not an issue
- \rightarrow Unique measurements (double Y, polarization, cross sections...)
- \rightarrow Triggers are a limiting factor
- \rightarrow No inclusive analysis: only $\mu\mu,$ pp...
- \rightarrow (No soft photons, no neutral mesons ...)

Hadronic machines

- \rightarrow Produce any quantum numbers
- \rightarrow CM energy is not an issue
- \rightarrow Unique measurements (double Y, polarization, cross sections...)
- \rightarrow Triggers are a limiting factor
- \rightarrow No inclusive analysis: only $\mu\mu,~p\overline{p}...$
- \rightarrow (No soft photons, no neutral mesons ...)

Rule of thumb for bottomonia:

- $\begin{array}{l} \rightarrow \mbox{ Yes to } \pi\pi/\gamma + \mbox{ } \mu\mu \mbox{ final states} \\ \mbox{ Y(nS)} \rightarrow \mbox{ } \pi\pi\mbox{ Y(1S)} \\ \mbox{ } \chi_{_{h}}(nP) \rightarrow \gamma\mbox{ Y(1S)} \end{array}$
- \rightarrow No to multi-hadrons final states $Y(nS)\rightarrow\gamma\eta_{_{b}}(1S)$

The collaboration considers Y(3S,5S,6S) runs as part of its physics program from the very beginning

- \rightarrow Still, the competition with LHCb on CPV is tough
- \rightarrow Nothing comes for free: a document for the Y(3S) run should be submitted by Feb. 2019

The ground states parameters

All the fits are performed using a Breit-Wigner shape

$$\frac{d\Gamma(\omega)}{d\omega} = \frac{4}{3} \alpha \frac{e_{\rm c}^2}{m_{\rm c}^2} \omega^3 |M|^2 \text{BW}(\omega) \longrightarrow \frac{d\Gamma(\omega)}{d\omega} \sim \omega^3 f(\omega) \text{BW}(\omega)$$

What is the proper theoretical shaper for this dumping factor?

The η_{c} width conundrum

What do I understand from this?

- \rightarrow NNLO is still not enough
- \rightarrow Is NRQCD converging fast enough?
- \rightarrow The problem is not in the experimental resolution

Bottom line:

 \rightarrow New data may be useful, but the problem with the η_c seems to be in the theoretical models rather than in the lack of good data

The $\eta_{h}(1S)$ case

No specific decay of the $\eta_{_{
m b}}(1{
m S})$ has been observed so far

 \rightarrow No (known) way to perform an exclusive reconstruction

 \rightarrow Can be studied only at B-factories looking at the photon spectrum in $e^+e^- \rightarrow$ hadrons @ Y(2S,3S)

The $\eta_{_{h}}(1S)$ case

...or by looking at the photon spectrum in e⁺e⁻ \rightarrow ($\pi\pi$, η) γ + hadrons @ Y(4S, 5S)

15

The $\eta_{_{b}}(1S)$ case

- \rightarrow No treatment of the dumping factor
- \rightarrow No full reconstruction!

The $\eta_{\rm b}(1S)$ case

ightarrow The analysis with conversions somehow further confuses the situation

The $\eta_{b}(1S)$ case

Quite some room for experimental improvements

The $\eta_{h}(1S)$ at Belle II

Luminosities and number of events

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII	-	-	300 (1200)	$5 \times 10^4 (5.4 \times 10^4)$	1000 (300)	100+400(scan)	3.6%

 $Y(3S) \rightarrow \gamma \eta_{h}(1S)$: ~200k evts (~5000 with conversion!)

 $Y(3S) \rightarrow \pi\pi \, Y(2S) \rightarrow \pi\pi\gamma \, \eta_{_{D}}(1S)$: 3000 evts, no ISR background

$$\begin{split} \mathsf{Y}(4\mathsf{S}) &\to \eta \ \mathsf{h}_{_{b}}(1\mathsf{P}) \to (\gamma\gamma)\gamma \ \eta_{_{b}}(1\mathsf{S}) \text{: } 2.5 \ \text{Million events} \\ \mathsf{Y}(5\mathsf{S}) &\to \pi\pi \ \mathsf{h}_{_{b}}(\mathsf{n}\mathsf{P}) \to \pi\pi\gamma \ \eta_{_{b}}(1\mathsf{S}, \ 2\mathsf{S}) \text{: } 125k \ \text{each} \end{split}$$

Ground state exclusive decays

Phys. Rev. Lett. 119, 252001 (2017)

With 50 ab^{-1} of Y(4S) Belle II can measure $\eta_{h}(1S) \rightarrow \gamma\gamma$ with ~20% uncertainty

Di-pion transitions

What Y(5S) Y(5S) Y(4S)	we ar → η → η → πл	re missi hb(1P) hb(2P) hb(1P)	ng: Bell	e II	
χ _ь (3Ρ χ _ь (2Ρ) → ω) → η	Υ(1S) η _ь (1S)	Belle I Belle I	l (?) l (?)	
Y(1D) Y(3S)	$\rightarrow \eta$ $\rightarrow \eta$	Y(1S) Y(1S)	Belle I Belle I		
the ha in sing	adroni glets s	c trans states a	itions fr re unkn	om own	
Any th	eoret	ical pre	diction	is wel	come!

- - --

Di-pion transitions: a family picture

Di-pion transitions

Exotic stats contribute to the hadronic and radiative transitions from narrow quarkonia

Y.H. Chen et al, PRD93 (2016) 034030

Di-pion transitions

Exotic stats contribute to the hadronic and radiative transitions from narrow quarkonia

Y.H. Chen et al, PRD93 (2016) 034030

To-do list

 $\begin{array}{l} \mbox{Full amplitude analysis of} \\ \mbox{Y(3S)} \rightarrow \pi\pi\ \mbox{Y(1S)},\ \mbox{Y(2S)} \\ \mbox{$\chi_{_{b}}(2P)$} \rightarrow \pi\pi\ \mbox{$\chi_{_{b}}(1P)$} \end{array}$

Two (or three) ideas to exploit the Y(nS) annihilations

Y(nS) annihilations

Y(nS) annihilations into hadrons are quite peculiar and not very well know

1) Baryon and strangeness enhancement

PRD76 012005 (2007)

CLEO absolute yields

Particle Type	$(ggg)/(q\overline{q})$ [Data]
Λ	$(873600 \pm 1400)/(107300 \pm 600)$
p	$(1399800 \pm 1200)/(295900 \pm 500)$
\overline{p}	$(1359500 \pm 1200)/(285400 \pm 500)$
ϕ	$(227900 \pm 1600)/(48300 \pm 800)$
$f_2(1270)$	$(193000 \pm 4000)/(66500 \pm 1800)$

 $e^+e^- \rightarrow Y(1S,2S,3S)$ is a "low momentum hyperon factory"

26

Y(nS) annihilations

Y(nS) annihilations into hadrons are quite peculiar and not very well know

1) Baryon and strangeness enhancement

PRD76 012005 (2007)

1) Production of nuclei

Phys.Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01}) \mathrm{fb}$
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

Anti-deuteron is 10 times more abundant in $Y(nS) \rightarrow ggg$ than in $e^+e^- \rightarrow qq$ at the same energy

Lots of observation of exotica, but quite few completely independent confirmations \rightarrow Only X(3872) has been seen in prompt production (in pp and pp collisions)

A tentative comparison between Belle and CMS.

29

Belle II prospects with 300 fb⁻¹:

- \rightarrow 3-5 \times sensitivity in inclusive production from Y(3S)
 - $\mathsf{B}[\mathsf{Y}(\mathsf{nS}) \to \mathsf{X}(3872) + \mathsf{had}] \; / \; \mathsf{B}[\mathsf{Y}(\mathsf{nS}) \to \psi' + \mathsf{had}] > 7\%$
- \rightarrow 10-15 \times sensitivity in double charmonium

BaBar measured a reasonably high production of D* from Y(1S) annihilations

 $\mathsf{B}[\mathsf{Y}(\mathsf{nS})\to\mathsf{D*}+\mathsf{X}]=2.5\%$

Belle II will have:

 $\rightarrow \sim \!\! 10 x$ the data

 \rightarrow Better efficiency at low momenta

FIG. 3: Reconstruction efficiency for the decay chain $\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S), \ \Upsilon(1S) \to D^{*\pm} X$ as a function of the scaled $D^{*\pm}$ momentum \mathbf{x}_p .

BaBar measured a reasonably high production of D^* from Y(1S) annihilations

 $B[Y(nS) \rightarrow D^* + X] = 2.5\%$

Belle II will have:

 \rightarrow ${\sim}10 x$ the data

- \rightarrow Better efficiency at low momenta
- Production at Colliders speaks against extended objects;
- using Pythia to estimate the probability to find a D-Dbar pair in the relevant phase space, factors of 10⁻² with respect to the X(3872) cross section measured by CDF (~ 30 nb) are found.

 \rightarrow We can aim for associated DD* and (maybe) DD* correlations

 \rightarrow And if we actually observe also the X(3872)...

Idea nr. 2: Bottomonium for astrophysics

 \overline{d} detection in cosmic rays is considered since long a probe

Donato, Fornengo, Salati, PRD 62, 043003 (2000) Aramaki et al. Phys. Rept. 618 (2016) 1-37

for low or intermediate mass WIMPs

 \rightarrow it's kinematically easier to produce a d from $\chi\chi$ annihilation than from SM processes

Idea nr. 2: Bottomonium for astrophysics

 \rightarrow Anti-deuteron production is described by **p-n coalescence** models tuned on the HEP data

$$\frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}T_{\bar{d}}} = \frac{p_0^3}{6} \frac{m_{\bar{d}}}{m_{\bar{n}}m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \frac{\mathrm{d}N_{\bar{n}}}{\mathrm{d}T_{\bar{n}}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}T_{\bar{p}}}$$

- \rightarrow Most recent data are from Alice (large final state, MC-driven correction)
- \rightarrow Strong need to further constrain the d production model (new AMS-02 data are coming, <u>few He3 could have been observed</u>)

Donato, Fornengo, Salati, PRD 62, 043003 (2000) Aramaki et al. Phys. Rept. 618 (2016) 1-37

Idea nr. 2: Bottomonium for astrophysics

Use the Belle II data to investigate the basic mechanism for d production

- \rightarrow No final state interaction (complementarity with Alice)
- \rightarrow Better particle identification than $% \left(B_{1},B_{2},B_{1},B_{2},B_{1},B_{2},B_{1},B_{2},B$
- \rightarrow Collect ~30000 d, with dedicated tracking and PID
- \rightarrow Is coalescence really the whole story?

Need for theoretical models!

 \rightarrow d production models are made for HIC!

Idea nr. 3: Hyperon-Hyperon interactions

Two results from Belle:

Rough extrapolation for 300 fb⁻¹ Y(3S) ~60 Million events with one Λ or $\overline{\Lambda}$ ~3 Million events with one $\Lambda\overline{\Lambda}$ pair

- \rightarrow High statistics study near threshold enhancement
- \rightarrow Stable H di-baryon in missing mass
- \rightarrow Extract the $\Lambda\Lambda$ potential from correlations?
 - \rightarrow Need for theoretical input on the $\Lambda\Lambda$ correlations
 - in a small volume

Conclusions

This talk was extremely incomplete

 \rightarrow Lots of topics has been neglected

The next years can represent our last chance to fully investigate the bottomonium spectrum \rightarrow Again, lots of topics has been neglected

Hadronic annihilations are a bridge between sectors of low energy QCD that we should exploit

Conclusions

This talk was extremely incomplete

 \rightarrow Lots of topics has been neglected

The next years can represent our last chance to fully investigate the bottomonium spectrum

 \rightarrow Again, lots of topics has been neglected

Hadronic annihilations are a bridge between sectors of low energy QCD that we should exploit

The uniqueness of quarkonia: the X(3915) saga

Belle 2017: New analysis of $e^+e^- \rightarrow J/\psi D^0\overline{D}^0$: **X(3860)**

The low-energy radiative transitions

The M1 radiative transition $\Upsilon(1S) \rightarrow \eta_b(1S)\gamma$ is the unique electromagnetic decay of $\Upsilon(1S)$ state, which has no experimental information until now.

This is going to be impossible unfeasible just a nightmare very challenging...

... This of course doesn't mean that we are never going to try do to this analysis

Y(3S): precision spectroscopy

The components of the Y(1D) triplet have not been disentagled yet

Summary and readiness: bottomonium

Competition and complementarity

- No other experiment, running or planned, can address the open topics in bottomonium physics
- Belle II is the last chance we have to make further measurements
- >30 unique papers with less than 1 ab^{-1} of data (Y(3S) and Y(6S) only)

CMS energy requirements

- Run at Y(3S) (200 MeV below nominal energy)
- Run at Y(6S) (460 MeV above nominal energy)
- Run at Y(5S) (300 MeV above nominal energy)

Luminosity

- 0.3 ab^{-1} for Y(3S)
- 0.1 ab^{-1} for Y(6S)
- 1 ab^{-1} for Y(5S) (to be used for Bs physics)
- 0.4 ab^{-1} for scans (+ possibility for 20 fb⁻¹ in Phase II)
- These luminosity request are the minimal ones needed to achieve the bottomonium physics program. Any reduction would significantly compromise parts of it, in particular the new physics searches Y(3S)

Triggers:

- Special trigger for $\mathsf{Y}(\mathsf{1S}) \to \mathsf{invisible},$ under development

Summary and readiness: bottomonium

A possible run plan

- Only an hypothesis, still to be discussed with the accelerator group
- Devote the end of each year of data taking to non-Y(4S) physics (few weeks / year o average, at most)

The Y(3S) run would require (not including the time needed to change energy and assuming no changes in the luminosity): \rightarrow few months at 0.5x10³⁵ cm⁻² s⁻¹ (~ May 2018) \rightarrow few weeks at 3x10³⁵ cm⁻² s⁻¹ (~ May 2020) \rightarrow few days at 8x10³⁵ cm⁻² s⁻¹ (~ May 2022)

Y(3S) data should be preferably taken at low luminosity, to fully exploit the di-pion trigger for $Y(1S) \rightarrow$ invisible

The Y(6S) scan would require ~ 2 months independently from the luminosity (40 points, 10 fb^{-1} each)

The Y(6S) on-resonance would require few days. Possibly split it in 10 fb⁻¹ at the very beginning of phase III and the rest afterwards ?

Competition and complementarity

- LHCb and BESIII run a parallel program in charmonium physics
- Competition for the vector states (BESIII) and for the $~{\sf B} \rightarrow$ (cc) K (LHCb)
- Unique topics: double charmonium (cross section, absolute BF, spectroscopy),

 $\gamma\gamma
ightarrow$ cc (form factors, spectroscopy)

CMS energy requirements

- The charmonium physics program is part of the Y(4S) physics program
- Double charmonium, $\gamma\gamma$ fusion and the ISR program can take place at any energy

Luminosity

- No tight requirement for $\gamma\gamma \rightarrow c\bar{c}$, precise results starting from 10 ab⁻¹
- As much as possible for double charmonium
- Crucial for ISR and $B \rightarrow cc K$. Running 6 month/year would pose us significantly beyond BESIII and LHCb.

Triggers:

- No need for specific triggers, all the final states have several charged tracks

Software:

- ISR generators (PHOKARA, KKMC, BABAYAGA...) are part of the generator package
- No need for dedicated analysis or fitting tools

Charmonium in ISR

-

Cı	urrent samp	les in fb⁻	¹ (million	s of events)), and the propos	sal for Belle	e			
	Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$	=	
	CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%	-	
	BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%		
	Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%	1 60/ 6	
	BelleII	-	-	300 (1200)	$5 \times 10^4 (5.4 \times 10^4)$	1000 (300)	100+400(scan)	(3.6%)	- 1.6% for	. \
				4		-			⁼ bottomoniu	m only
Exotica as Precision NI New Physi	virtual conti RQCD test cs (DM / lig	ributions ht higgs)	to transit	ions - Bs - E >	physics (otica discovery					
Missing had	ronic and rad	iative tran	sitions	- Pr	ecision Zb mass m	easurement	\			
Baryon phys	sics (inc. corre	elations)		- M	issing hadronic and	radiative tra	nsitions	١		
Anti-nuclei	production	(with DM	1 applicat	ions) - Li	ght meson spectr	oscopy in tr	ansitions _	۱		
Gluon fragm	nentation						- Ex	xotica d	liscovery	
Inclusive c	harmonium p	oroductio	n and DD	correlations			- Y	(5S-6S)	lineshape	
LFV and LU	⁻ V and LUV in Y(nS) decays								4	-6

Accelerator requirements for bottomonium

1.1 GeV

Energy

Compression

3-5

 \rightarrow Need to run safely at this energy

J-arc

В

1.5 GeV

AB

Primary electron

2.9 GeV, 10nC x 2

 \rightarrow Would greatly profit from a linac upgrade to reach 11.24 GeV (see next slide)

New RF gun 5 nC

New Positron

C-2

Capture Section

Thermionic gun 10 nC

Bunch

Compression

20 um

0.2nC x 1

Y(6S) on-resonance run: conventional

- \rightarrow Y(5S)-Y(6S) are portals to the missing narrow states
- \rightarrow Y(5S) \rightarrow η Y(1D) is the largest Y(5S), single-meson transition
- ightarrow The conventional spectrum gets contributions from the couple channel effect (again, light quarks...)

Mod. Phys. Lett. A 32, 1750025 (2017)

Name	L	S	J^{PC}	Emitted hadrons [Threshold, GeV/c^2]
$\eta_b(3S)$	0	0	0^{-+}	ω [11.12], ϕ [11.36]
$h_b(3P)$	1	0	1^{+-}	$\pi^{+}\pi^{-}$ [10.82], η [11.09], η' [11.50]
$\eta_{b2}(1D)$	2	0	2^{-+}	ω [10.93], ϕ [11.17]
$\eta_{b2}(2D)$	2	0	2^{-+}	ω [11.23], ϕ [11.47]
$\Upsilon_J(2D)$	2	1	$(1, 2, 3)^{}$	$\pi^{+}\pi^{-}$ [10.73], η [11.00], η^{\prime} [11.41]
$h_{b3}(1F)$	3	0	3^{+-}	$\pi^{+}\pi^{-}$ [10.63], η [10.90], η^{\prime} [11.31]
$\chi_{bJ}(1F)$	3	1	$(2,3,4)^{++}$	ω [11.14], ϕ [11.38]
$\eta_{b4}(1G)$	4	0	4^{-+}	ω [11.31], ϕ [11.55]
$\Upsilon_J(1G)$	4	1	$(3, 4, 5)^{}$	$\pi^{+}\pi^{-}$ [10.81], η [11.08], η' [11.49]

Belle II goals:

- \rightarrow Search for new, predicted, resonances
- \rightarrow Use both single transitions and double cascades
- \rightarrow Fill the remaining spectrum to measure the effects of the coupled channels contributions

Y(5S): Zb masses

The measurement of the Zb masses is foundamental to determine their nature: are they above or below the $B^{(*)}B^*$ thresholds?

 \rightarrow Equivalent to the X(3872) mass problem: above or below the open threshold?

Current best estimate of the Zb location with respect to the thresholds:

$$\varepsilon_B(Z_b) = (0.60^{+1.40}_{-0.49} \pm i0.02^{+0.02}_{-0.01}) \text{ MeV},$$

 $\varepsilon_B(Z_b') = (0.97^{+1.42}_{-0.68} \pm i0.84^{+0.22}_{-0.34}) \text{ MeV},$

 $\begin{array}{l} \mbox{Belle II Goals:} \\ \rightarrow \mbox{ Determine if the Zb are located above or below the} \\ \mbox{ open flavour threshold using 1 ab^{-1} of Y(5S)} \end{array}$

Y(5S) - Y(6S) scan

- \rightarrow Investigate the presence of a broad resonance at 10.750 GeV \rightarrow 10 MeV wide steps, 10 fb^{-1} each (10x Belle scan)
- \rightarrow Y(5S) and Y(6S) line-shapes in R, $R_{_{Y\pi\pi}}$ and $R_{_{h\pi\pi}}$
- \rightarrow Rb decomposition (BB, BB*, B*B*, BB* π , B*B* π , B*B* π , BsBs ...)
- \rightarrow Overall goal: settle the nature of the Y(5S)

Y(3S): rare χ_h decays

 $\chi_{b}(2P) \rightarrow \tau\tau$ is sensitive to the presence of a CP-even light Higgs (as $B \rightarrow \tau\tau$, $B \rightarrow \tau\nu$...)

$$\mathsf{BR}^{H}(\chi_{b0}(1P) \to \tau\tau) = 3.1 \times 10^{-13} \\ \mathsf{BR}^{H}(\chi_{b0}(2P) \to \tau\tau) = (1.9 \pm 0.5) \times 10^{-12} \\ \right\} \times \left[1 + \frac{M_{H_{125}}^2 \tan^2 \beta}{M_{\mathsf{new}}^2 - M_{\chi_{b0}}^2} \right]^2$$

Will only need $(M_{H_{125}}/M_{H_{\text{new}}}) \tan \beta \sim 30$ for $\mathcal{O}(100)$ signal events in $\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P) \rightarrow \gamma \tau \tau$

Results: $\Upsilon(3S)$

Belle II goals:

 $\rightarrow~\chi_{_{b0}}(\text{2P, 1P})\rightarrow\gamma\tau\tau$ inclusive

- $\rightarrow~\chi_{_{b0}}(\text{2P, 1P})\rightarrow\gamma\tau\tau$ per exclusive final state
- \rightarrow MC studies ongoing

$$Y(1S) \rightarrow invisible$$

 $\mathsf{Y}(1\mathsf{S}) \to \mathsf{invisible}$ is well calculable in the SM

$$\frac{BR(Y(1S) \rightarrow v \bar{v})}{BR(Y(1S) \rightarrow e^+ e^-)} = \frac{27 G^2 M_{Y(1S)}^4}{64 \pi^2 \alpha^2} (-1 + \frac{4}{3} \sin^2 \theta_w)^2 = 4.14 \times 10^{-4}$$
$$BR(Y(1S) \rightarrow v \bar{v}) \sim 9.9 \times 10^{-6}$$

Non-SM contributions from $Y(1S) \rightarrow \chi \chi$

52

 $Y(1S) \rightarrow invisible$

 $\mathsf{Y}(1\mathsf{S}) \to \mathsf{invisible}$ is well calculable in the SM

$$\frac{BR(Y(1S) \rightarrow v\bar{v})}{BR(Y(1S) \rightarrow e^+e^-)} = \frac{27G^2M_{Y(1S)}^4}{64\pi^2\alpha^2} (-1 + \frac{4}{3}\sin^2\theta_w)^2 = 4.14 \times 10^{-4}$$
$$BR(Y(1S) \rightarrow v\bar{v}) \sim 9.9 \times 10^{-6}$$

Non-SM contributions from $Y(1S) \rightarrow \chi \chi$

Belle: Phys.Rev.Lett. 98 (2007) 132001

Source	(%)	_
Track selection	5.6	
π^0 veto	2.4	
Fisher discriminant	6.1	
Other selection requirements	1.1	
$\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S)$	7.6	4% in BaBar
Trigger efficiency	8.7	
Fit bias	0.2	
Statistics of control sample	1.4	
${\cal B}(\Upsilon o \mu^+ \mu^-)$	2.0	
Total	14.7	

Belle II prospects

- \rightarrow 10x dataset w/ respect to BaBar
- \rightarrow Sensitivity ${\sim}1$ x 10^{\text{-4}} on the BF
- \rightarrow Reduce the systematic with precision measurement of the pp and gg transitions
- ightarrow Trigger is crucial: capability to trigger on 2p + missing energy depends on the BG levels and luminosity

Charmonium from B decay

 $B \rightarrow K \ (cc) \rightarrow K \ (hadrons, hadrons + \mu\mu, n\gamma + \mu\mu)$

- ightarrow Competitive in neutral transitions (Xcc ightarrow η , π^{0} , ω J/ ψ)
- \rightarrow Competitive for finals states with large multiplicities (h__ and $\eta_{_c})$
- \rightarrow Unique opportunity for inclusive measurements

Belle II prospects:

 \rightarrow Discover the $\eta_{_{c2}}(2D)$, last narrow charmonium missing in B \rightarrow K $\gamma \, h_{_c}$ \rightarrow Comprehensive study of B \rightarrow K DD, KDD*, KD*D*, KDD**, KD*D**

Y(3S): $\pi\pi$ scattering length

 q_3

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} + \mathcal{O}(m_q^2)$$
 $a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} + \mathcal{O}(m_q^2)$
Weinberg, PRL17,616(1966)

Using ChPT, theory predicts: $a_0^0 - a_0^2 = 0.265 \pm 0.004$

Colangelo, et al, PLB488,261(2000)

55

The η_{c} width conundrum

What do I understand from this?

- \rightarrow NNLO is still not enough
- \rightarrow Is NRQCD converging fast enough?
- \rightarrow The problem is not in the experimental resolution

A funny coincidence: what happens if we take the measurements done with M1 naive fit?

11.5 ± 4.5	GAISER	1986	CBAL	$J\!/\psi o \gamma$ X, $\psi(2S) o \gamma$ X
$11.0 \pm 8.1 \pm 4.1$	12 BAI	2000F	BES	$J/\psi o \gamma \eta_c$ and $\psi(2S) o \gamma \eta_c$
$17.0 \pm 3.7 \pm 7.4$	10 BAI	2003	BES	$J/\psi o \gamma \eta_c$