Supersymmetric Features of Hadron Physics and other Novel Features of QCD

 from Light-Front Holography and Superconformal Quantum Mechanics

Bound States in Strongly Coupled Systems March 12, 2018
with Guy de Tèramond, Hans Günter Dosch, C. Lorcè, M. Nielsen, K. Chiu, R. S. Sufian, A. Deur
E. Klempt and B. Ch. Metsch

The leading Regge trajectory: Δ resonances with maximal J in a given mass range.
Also shown is the Regge trajectory for mesons with $\mathrm{J}=\mathrm{L}+\mathrm{S}$.

6. $M^{2}\left(\mathrm{GeV}^{2}\right)$
 $\rho-\Delta$ superpartner trajectories

 fermions
 BARYONS
 [qqq]
 $L_{M}=L_{B}+1$
 Dosch, de Teramond, sjb
 L (Orbital Angular Momentum)

Guy de Tèramond, Hans Günter Dosch, sjb
Superconformal Algebra 2X2 Hadronic Multiplets: 4-Plet
Bosons, Fermions with Equal Mass!
Meson

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Baryon

$$
\phi_{M}, L_{B}+1 \quad \underset{\substack{B+\\ \text { Baryon }}}{\psi_{B}}
$$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Fundamental Question: Origin of the QCD Mass Scale

- Pion massless for $m_{q}=0$
- What sets the mass of the proton when $m_{q}=0$?
- QCD: No knowledge of MeV units: Only ratios of masses can be predicted
- Novel proposal by de Alfaro, Fubini, and Furlan (DAFF): Mass scale к can appear in Hamiltonian leaving the action conformal!
- Unique Color-Confinement Potential $\kappa^{4} \zeta^{2}$
- Eigenstates of Light-Front Hamiltonian determine hadronic mass spectrum and LF wavefunctions $\psi_{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$
■ Superconformal algebra: Degenerate meson, baryon, and tetraquark mass spectrum
- Running QCD Coupling at all scales: Predict $\frac{\Lambda_{\overline{M S}}}{m_{p}}$

$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \quad \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
\end{aligned}
$$

Measurements ofhadron LF wavefunction are at fixed LF time

Like aflash photograph

Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

Dirac: Front Form

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

Causal, Frame-independent, Simple Vacuum, Current Matrix Elements are overlap of LFWFS

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Orel, sib

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

Collins, Burkardt, Ji, Yuan. Pasquini, ...

QCD S- and P-
Coulomb Phases
--Wilson Line
"Lensing Effect"

Leading-Twist Rescattering Violates PQCD Factorization!

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{gathered}
$$

$H_{L F}^{i n t}$: Matrix in Fock Space

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Spectrum and Light-Front wavefunctions
LFWFs: Off-shell in \mathbf{P} - and invariant mass
 $H_{L F}^{i n t}$

$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$
 $g_{q} \bar{\psi}_{q}(x) \psi_{q}(x) h(x)$

Yukawa Higgs coupling of confined quark to Higgs zero mode gives

$$
\begin{gathered}
\bar{u} u g_{q}<h>=\frac{m_{q}}{x_{q}} m_{q}=\frac{m_{q}^{2}}{x_{q}} \\
H_{L F}=\sum_{q} \frac{k_{\perp q}^{2}+m_{q}^{2}}{x_{q}}
\end{gathered}
$$

Light-Front QCD

Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ: Solve QCD $(1+1)$ for any quark mass and flavors
Hornbostel, Pauli, sib

Minkowski space; frame-independent, no fermion doubling; no ghosts trivial vacuum

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} .
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at $\operatorname{high} x$!

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time

$H_{Q E D}$

QED atoms: positronium

 and muoniumCoupled Fock states

$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

Semiclassical first approximation to QED

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

Fixed $\tau=t+z / c$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

AdS_{5}

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement in z
- Introduces confinement scale к
- Uses AdS5 as template for conformal theory for Theoretical Physics

Supersymmetric Features of Hadron Physics from Light-Front Holography and Superconformal Algebra

Stan Brodsky

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$ bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dülaton-Modified $A d S_{5}$
Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$
z<\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holographbic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
4 \kappa^{2} \text { for } \Delta L=1
$$

$$
m_{q}=0
$$

$$
2 \kappa^{2} \text { for } \Delta S=1
$$

Massless pion in Chiral Limit! Same slope in n and L!

$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families $(\kappa=0.54 \mathrm{GeV})$

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Mass ratio of the ρ and the a_{1} mesons: coincides with Weinberg sum rules

> G. de Teramond, H. G. Dosch, sjb

Uniqueness of Dilaton

$$
\varphi_{p}(z)=\kappa^{p} z^{p}
$$

- Dosch, de Tèramond, sjb

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.
Same slope in n and L !

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

$M^{2}(n, L, S)=4 \kappa^{2}(n+L+S / 2)$

Equal Slope in n and L

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{q}^{2}}{1-x}|X\rangle$
 from LF Higgs mechanism

Effective mass from $m\left(p^{2}\right)$

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

$$
\psi_{M}\left(x, k_{\perp}^{2}\right)^{0}
$$

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model

massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Roberts et al. }
$$

Provides Connection of Confinement to Hadron Structure

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

$$
\text { Fixed } \tau=t+z / c
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$$x$

Boost-invariant LFWF connects confined quarks and gluons to hadrons

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

- de Alfaro, Fubini, Furlan ($(A A F F)$

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identicalto LF Hamiltonian with unique potential and dilaton!

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

dAFF: New Time Variable
$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale!

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D \\
{[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i D, }[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}} \\
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
\end{gathered}
$$

Supersymmetric Superconformal QM

(Fubini \& Rabinovici, NPB245 (84) 17)
graded algebra of two fermionic operators (super charges) Q, Q^{\dagger}
$\{Q, Q\}=0,\left\{Q^{\dagger}, Q^{\dagger}\right\}=0$ with $H=\left\{Q, Q^{\dagger}\right\} \Rightarrow[Q, H]=0,\left[Q^{\dagger}, H\right]=0$ minimum onformal realization \rightarrow particle with 2 degrees of freedom with:
$Q=\psi^{\dagger}\left(-\frac{\partial}{\partial x}+\left(\frac{f}{x}\right), Q^{\dagger}=\psi\left(\frac{\partial}{\partial x}+\frac{f}{x}\right)\left\{\begin{array}{c}\psi, \psi^{\dagger} \text { spinor operators with } \\ \left\{\psi^{\dagger}, \psi\right\}=I,\left[\psi^{\dagger}, \psi\right]=\sigma_{3}\end{array}\right.\right.$
$\begin{gathered}\text { in matrix } \\ \text { notation }\end{gathered} \quad Q=\left(\begin{array}{cc}0 & -\partial_{x}+\frac{f}{x} \\ 0 & 0\end{array}\right), Q^{\dagger}=\left(\begin{array}{cc}0 & 0 \\ \partial_{x}+\frac{f}{x} & 0\end{array}\right)$

$$
H=\left(\begin{array}{ccc}
-\partial_{x}^{2}+\frac{f^{2}+f}{x^{2}} . & 0 & \begin{array}{c}
\text { Hoperates on } \\
0
\end{array} \\
-\partial_{x}^{2}+\frac{f^{2}-f}{x^{2}}
\end{array}\right) \quad \begin{gathered}
\text { two component } \\
\text { states }
\end{gathered} \quad|\phi\rangle=\binom{\phi_{M}}{\phi_{B}}
$$

with same eigenvalue

Superconformal Quantum Mechanics

Baryon Equation $Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}$

Consider $R_{w}=Q+w S ; \quad w$: dimensions of mass squared

$$
G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}
$$

New Extended Hamiltonian G is diagonal:

$$
\begin{aligned}
G_{11}= & \left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
G_{22}= & \left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& \quad \text { Identify } f-\frac{1}{2}=L_{B}, \quad w=\kappa^{2} \quad \lambda=\kappa^{2}
\end{aligned}
$$

Eigenvalue of $G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right)$

LF Holography

$$
\begin{aligned}
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
& M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathrm{s}=\mathrm{I} / 2, \mathrm{P}=+ \\
& \lambda=\kappa^{2} \\
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
& M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same } \kappa! \\
& S=0 \text {, I= | Meson is superpartner of } S=\mid / 2 \text {, I=| Baryon } \\
& \text { Meson-Baryon Degeneracy for } L_{M}=L_{B}+1
\end{aligned}
$$

$M_{M}^{2}=4 \lambda\left(n+L_{M}+\frac{\mathcal{S}_{M}}{2}\right) \quad$ mesons with $L_{M}=0$ have no superpartners $M_{B}^{2}=4 \lambda\left(n+L_{B}+\frac{\mathcal{S}_{D}}{2}+1\right) \quad \pi\left(L_{M}=S_{M}=0\right) \Rightarrow \boldsymbol{M}_{\boldsymbol{\pi}}=\mathbf{0}$ in the chiral limit

Superconformal Quantum Mechanics Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

de Tèramond, Bosch, Lorce, sib
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}$

Same slope

Universal slopes in n, L
L

1	1	1	1	1	$\mathbf{1}$	
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

$$
\text { for } J=L+S \Rightarrow M_{n, L, S}^{2}=4 \lambda\left(n+L+\frac{S}{2}\right)
$$

$\lambda=\kappa^{2}$
de Tèramond, Dosch, Lorce', sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Solid line: $x=0.53 \mathrm{GeV}$

Superconformal meson-nucleon partners

Universal Ftadronic Features

- Universal quark light-front kinetic energy

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

Equal:

Virial • Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Term

$$
\mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}\left(S+L-1+2 n_{\text {diquark }}\right)
$$

$$
M^{2}=\Delta \mathcal{M}_{L F K E}^{2}+\Delta \mathcal{M}_{L F P E}^{2}+\Delta \mathcal{M}_{\text {spin }}^{2}
$$

$$
+\left\langle\sum_{i} \frac{m_{i}^{2}}{x_{i}}\right\rangle
$$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{+}^{2}\left(\zeta^{2}, x\right)=\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{-}^{2}\left(\zeta^{2}, x\right)=\frac{1}{2} \quad \begin{aligned}
& \text { Quark Chiral } \\
& \text { Symmetry of }
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Nucleon: Equal Probability for L=0, I

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No vacuum condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $L^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o. No mass-degenerate parity partners!

Features of Supersymmetric Equations

- $J=L+S$ baryon simultaneously satisfies both equations of G with $L, L+1$ with same mass eigenvalue
- $\mathrm{Jz}^{z}=\mathrm{L}^{z}+1 / 2=\left(\mathrm{L}^{z}+1\right)-1 / 2 \quad S^{z}= \pm 1 / 2$
- Proton spin carried by quark L^{z}

$$
\left.\left\langle J^{z}\right\rangle=\frac{1}{2}\left(S_{q}^{z}=\frac{1}{2}, L^{z}=0\right)+\frac{1}{2}\left(S_{q}^{z}=-\frac{1}{2}, L^{z}=1\right)=<L^{z}\right\rangle=\frac{1}{2}
$$

- Mass-degenerate meson "superpartner" with $L_{M}=L_{B}+1$. "Shifted meson-baryon Duality"

Mesons and baryons have same κ ! for Theoretical Physics

Supersymmetric Features of Hadron Physics from Light-Front Holography and Superconformal Algebra

Stan Brodsky

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

Proton transition form factor to the first radial excited state. Data from JLab

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1}{ }_{N \rightarrow N^{*}}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Consistent with counting rule, twist 3

Sufian, de Teramond, Deur, Dosch, sjb

Flavor Dependence of $Q^{6} F_{2}\left(Q^{2}\right)$

Sufian, de Teramond, Deur, Dosch, sjb

Start DGLAP evolution at transition scale $Q^{2}{ }_{0}$

Guy de Tèramond, Hans Günter Dosch, sjb

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!
Meson

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Baryon

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

$$
\phi_{M}, L_{B}+1 \quad \psi_{B+}, L_{B}
$$

Tetraquark

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

$$
\sigma\left(e^{+} e^{-} \rightarrow M T\right) \propto \frac{1}{s^{N-1}} \quad N=6
$$

Use counting rules to identify composite structure

- quark-antiquark meson $\left(\mathrm{L}_{\mathrm{M}}=\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)$)
- quark-diquark baryon (L_{B})
- quark-diquark baryon $\left(\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)$
- diquark-antidiquark tetraquark $\left(\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{\mathrm{B}}\right)$

- Universal Regge slopes $\lambda=\kappa^{2} \quad$ Same Twist!

$$
M_{H}^{2} / \lambda=\overbrace{\underbrace{\left(2 n+L_{H}+1\right)}_{\text {kinetic }}+\underbrace{\left(2 n+L_{H}+1\right)}_{\text {potential }}}^{\begin{array}{c}
\text { contribution from 2-dim } \\
\text { light-front harmonic oscillator }
\end{array}}+\overbrace{2\left(L_{H}+s\right)+2 \chi}^{\begin{array}{c}
\text { contribution from } A d S \text { and } \\
\text { superconformal algebra }
\end{array}}+
$$

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{p}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} q$	0^{-+}	π (140)	-	-	-	-	-	-
$\bar{q} q$	1^{+-}	b_{1} (1235)	$[u d] q$	$(1 / 2)^{+}$	$N(940)$	$[u d][\bar{u} \bar{d}]$	0^{++}	$f_{0}(980)$
$\bar{q} q$	2^{-+}	$\pi_{2}(1670)$	$[u d] q$	(1/2) ${ }^{-}$	$N_{\frac{1}{2}-(1535)}$	$[u d][\bar{u} \bar{d}]$	1^{-+}	$\pi_{1}(1400)$
				(3/2) ${ }^{-}$	$N_{\frac{3}{7}-(1520)}$			$\pi_{1}(1600)$
$\bar{q} q$	1--	¢(770) w(780)						
$\bar{q} q$	2^{++}	$a_{2}(1320), f_{2}(1270)$	$[q q] q$	$(3 / 2)^{+}$	Δ (1232)	$[q q][\bar{u} \bar{d}]$	1^{++}	$a_{1}(1260)$
$\bar{q} q$	3^{--}	$\rho_{3}(1690), \omega_{3}(1670)$	$[q q] q$	(1/2) ${ }^{-}$	$\Delta_{\frac{1}{4}-(1620)}$	$[q q][\bar{u} d]$	2^{--}	$\rho_{2}(\sim 1700) ?$
				$(3 / 2)^{-}$	$\Delta_{\frac{3}{2}}^{\frac{2}{2}}-(1700)$			
$\bar{q} q$	4^{++}	$a_{4}(2040), f_{4}(2050)$	$[q q] q$	$(7 / 2)^{+}$	$\Delta_{z+}(1950)$	$[q q][\bar{u} \bar{d}]$	3^{++}	$a_{3}(\sim 2070) ?$
$\bar{q} s$	$0^{-(+)}$	K(495)	-	-	- -	-	-	-
$\bar{q} s$	$1^{+(-)}$	$\bar{K}_{1}(1270)$	$[u d] s$	$(1 / 2)^{+}$	$\Lambda(1115)$	$[u d][\bar{s} \bar{q}]$	$0^{+(+)}$	$K_{0}^{*}(1430)$
$\bar{q} s$	$2^{-(t)}$	$K_{2}(1770)$	$[u d] s$	(1/2) ${ }^{-}$	$\Lambda(1405)$	$[u d][s \bar{q} \bar{q}]$	$1^{-(+)}$	$K_{1}(\sim 1700) ?$
				(3/2) ${ }^{-}$	$\Lambda(1520)$			
$\bar{s} q$	$0^{-(+)}$	K(495)	-	-	-	-	-	-
$\bar{s} q$	$1^{+(-)}$	$K_{1}(1270)$	$[s q] q$	$(1 / 2)^{+}$	$\Sigma(1190)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$a_{0}(980)$
								$f_{0}(980)$
$\bar{s} q$	$1^{-(-)}$	K^{*} (890)	-	-	-	-	-	-
$\bar{s} q$	$2^{+(+)}$	$K_{2}^{*}(1430)$	[sq]q	$(3 / 2)^{+}$	$\Sigma(1385)$	[sq] $] \bar{q} \bar{q}]$	$1^{+(+)}$	$K_{1}(1400)$
$\bar{s} q$	3^{-r-1}	$K_{3}^{\prime}(1780)$	[sq]q	$(3 / 2)^{-}$	$\Sigma(1670)$	[sq] $\bar{q}_{\text {q] }}$	$2^{-(-)}$	$K_{2}(\sim 1700) ?$
$\bar{s} q$	$4^{+(+)}$	$K_{4}^{*}(2045)$	$[s q] q$	$(7 / 2)^{+}$	$\Sigma(2030)$	[sq] $]$ q $\bar{q}]$	$3^{+(+)}$	$K_{3}(\sim 2070) ?$
$\bar{s} s$	0^{-+}	7 (550)	-	-	-	-	-	-
$\bar{s} s$	1^{+-}	$h_{1}(1170)$	$[s q] s$	$(1 / 2)^{+}$	$\Xi(1320)$	$[s q][\bar{s} \bar{q}]$	0^{++}	$f_{0}(1370)$
								$a_{0}(1450)$
$\bar{s} s$	2^{-+}	$T_{2}(1645)$	[sq]s	$(?)^{?}$	$\Xi(1690)$	[sq] ${ }^{\text {s }}$ 何]	1^{-+}	$\Phi^{\prime}(1750)$?
$\bar{s} s$	1^{--}	$\Phi(1020)$	-	-	-	-	-	-
$\bar{s} s$	2^{++}	f_{2}^{\prime} (1525)	$[s q] s$	$(3 / 2)^{+}$	$\Xi^{*}(1530)$	[sq] $\bar{s} \bar{q}]$	1^{++}	$f_{1}(1420)$
$\bar{s} s$	3--	$\Phi_{3}(1850)$	[sq]s	$(3 / 2)^{-}$	$\Xi(1820)$	[sq] $[\bar{s} q]$	2^{--}	$\Phi_{2}(\sim 1800) ?$
$\bar{s} s$	2^{++}	$f_{2}(1950)$	[ss]s	$(3 / 2)^{+}$	$\Omega(1672)$	[ss][sp $]$	$1^{+(+)}$	$K_{1}(\sim 1700)$?

New Organization of the Hadron Spectrum M. Nielsen

Supersymmetry across the light and heavy-light spectrum

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Extension to Heavy-Light sector DdTB, arXiv:1611.02370

it was shown that the LF potential in the heavy-light sector, even for strongly broken conformal invariance, has the same quadratic form as the one dictated by the conformal algebra: $\quad \varphi(\zeta)=\frac{1}{2} \lambda A, \zeta A$ arbitrary constant

Superpartners for states with one c quark

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{q} c$	0^{-}	$D(1870)$		-	-		-	-
$\bar{q} c$	1^{+}	$D_{1}(2420)$	[ud]c	(1/2)+	$\Lambda_{c}(2290)$	[ud][$\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{0}^{*}(2400)$
$\bar{q} c$	2^{-}	$D_{J}(2600)$	[ud]c	(3/2) ${ }^{-}$	$\Lambda_{c}(2625)$	[ud][$\bar{c} \bar{q}]$	1^{-}	-
$\bar{c} q$	0^{-}	$\bar{D}(1870)$						
$\bar{c} q$	1^{+}	$\square_{1}(2420)$	$[c q] q$	(1/2) ${ }^{+}$	$\Sigma_{c}(2455)$	[cq] $\bar{u} \bar{d}]$	0^{+}	$D_{0}^{*}(2400)$
$\bar{q} c$	$1{ }^{-}$	$D^{*}(2010)$						
$\bar{q} c$	2^{+}	$D_{2}^{*}(2460)$	(qq) c	(3/2) ${ }^{+}$	$\Sigma_{c}^{*}(2520)$	(qq) $[\bar{q} \bar{q}]$	1^{+}	$D(2550)$
$\bar{q} c$	3^{-}	$D_{3}^{*}(2750)$	(qq) c	(3/2) ${ }^{-}$	$\Sigma_{c}(2800)$	($q q$) $[\bar{q} \bar{q}]$	-	-
$\bar{s} c$	0^{-}	$D_{s}(1968)$			-	-	-	-
$\bar{s} c$	1^{+}	$D_{\text {s1 }}(2460)$	$[q s] c$	(1/2) ${ }^{+}$	$\Xi_{c}(2470)$	[$q s$][$\bar{c} \bar{q}]$	0^{+}	$\bar{D}_{s 0}^{*}(2317)$
$\bar{s} c$	2^{-}	$\mathbb{T}_{s 2}(\sim 2860) ?$	$[q s] c$	(3/2) ${ }^{-}$	$\Xi_{c}(2815)$	¢sq] [çq]	1^{-}	-
$\bar{s} c$	1^{-}	$D_{s}^{*}(2110)$			-	-	-	-
$\bar{s} c$	2^{+}	$D_{s 2}^{*}(2573)$	(sy) c	(3/2) ${ }^{+}$	$\Xi_{c}^{*}(2645)$	(sq) [$[\bar{q}]$	1^{+}	$D_{s 1}(2536)$
$\bar{c} s$	1^{+}	$\widehat{W}_{\text {s1 }}(\sim 2700) ?$	$[c s] s$	(1/2) ${ }^{+}$	$\Omega_{c}(2695)$	$[c s][$ [$¢ \bar{q}]$	0^{+}	??
$\bar{s} c$	2^{+}	$\widehat{1}_{s 2}^{*}(\sim 2750)$?	(3s)c	(3/2)+	$\Omega_{c}(2770)$	(ss) [cas	1^{+}	??
				$N_{p r}$	ictions	beaut	ul agr	ement!

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Superpartners for states with one b quark

Meson			Baryon			Tetraquark				
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name		
$\bar{q} b$	0^{-}	$\bar{B}(5280)$	-	$(1 / 2)^{+}$	$\Lambda_{b}(5620)$	$[u d][\bar{b} \bar{q}]$	-	-		
$\bar{q} b$	1^{+}	$\bar{B}_{1}(5720)$	$\begin{gathered} {[u d] b} \\ {[u d] b} \end{gathered}$				0^{+}	$B_{J}(5732)$ -		
$\bar{q} b$	2^{-}	$\bar{B}_{J}(5970)$		$(3 / 2)^{-}$	$\Lambda_{b}(5920)$	[ud] $[\bar{b} \bar{q}]$	1^{-}			
$\bar{b} q$	0^{-}	$B(5280)$	${ }^{[b q]}{ }^{-}$	$(1 / 2)^{+}$	$\Sigma_{b}(5815)$	$[b q][\bar{u} \bar{d}]$	$\overline{0^{+}}$	$\bar{B}_{J}(5732)$		
$\bar{b} q$	1^{+}	$B_{1}(5720)$								
$\bar{q} b$	1^{-}	$B^{*}(5325)$	$(q q) b$	$(3 / 2)^{+}$	$\sum_{b}^{*}(5835)$	$(q q)[\bar{b} \bar{q} \overline{]}$	$\overline{1^{+}}$	$B_{J}(5840)$		
$\bar{q} b$	2^{+}	$B_{2}^{*}(5747)$								
$\bar{s} b$	0^{-}	$B_{s}(5365)$	$\overline{[q s] b}$	$(1 / 2)^{+}$	$\Xi_{b}(5790)$	$[q s][\bar{b} \bar{q}]$		-		
$\bar{s} b$	1^{+}	$B_{s 1}(5830)$						$\bar{B}_{s 0}^{*}(\sim 580$		
$\bar{s} b$	1^{-}	$B_{s}^{*}(5415)$	$(s q) b$	$(3 / 2)^{+}$	$\Xi_{b}^{*}(5950)$					
$\bar{s} b$	2^{+}	$B_{s 2}^{*}(5840)$								
$\bar{b} s$	1^{+}	$\widehat{B}_{\text {si }}(\sim 6000)$	[bs]s	$(1 / 2)^{+}$	$\Omega_{b}(6045)$	[bs) ${ }^{\text {s }}$ ¢ \bar{q}]		??		

States with two heavy quarks

Trawinski, Stanislaw, Glazek, Brodsky, De Te'ramond, Dosch, PRD90(2104)
quadratic potential in FF linear potential in IF for light quarks

Cornell potential for heavy quarks

$$
I=0, I=1 ?
$$

The LF confinement potential for systems containing two heavy quarks will be modified. Therefore the extension of superconformal algebra to such states is somewhat speculative. However...

Meson			Baryon				Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name	
$\bar{c} c$	0^{-+}	$\eta_{c}(2984)$	-	-	-	-	-	-	
$c \bar{c}$	1^{+-}	$h_{c}(3525)$	$[c q] c$	$(1 / 2)^{+}$	$\Xi_{c c}^{S E L E X}(3520)$	$[c q][\bar{c} \bar{q}]$	0^{++}	$\chi_{00}(3415)$	
					$\Xi_{c c}^{L H C b}(3620)$				
$\bar{c} c$	1^{--}	$J / \psi(3096)$	-	-		-	-	-	
$\bar{c} c$	2^{++}	$\chi_{c 2}(3556)$	$(c q) c$	$(3 / 2)^{+}$	$\Xi_{c c}^{L H C b}(3620)$	$(c q)[\bar{c} \bar{q}]$	1^{++}	$\chi_{c 1}(3510)$	

Meson			Baryon			Tetraquark		
q-cont	$J^{P(C)}$	Name	q-cont	J^{P}	Name	q-cont	$J^{P(C)}$	Name
$\bar{c} c$	1	$J / \psi(3096)$	-	-	-	-	-	-
$\bar{c} c$	2^{++}	$\chi_{c 2}(3556)$	$(c q) c$	$(3 / 2)^{+}$	$\Xi_{c c}^{L H C b}(3620)$	$(c q)[\bar{c} \bar{q}]$	1^{++}	$\chi_{c 1}(3510)$
$\bar{c} c$	$\begin{aligned} & 1^{--} \\ & 2^{++} \end{aligned}$	$\begin{gathered} \mathrm{n}=1 \\ \psi^{\prime}(3686) \\ \chi_{c 2}(3927) \end{gathered}$	$\overline{(c q) c}$	-	:			(3872)
		$\chi_{c 2}(3927)$			cc ~ 3900 ?		1^{+}	$\frac{X(3872)}{Z_{c}(3900)}$

New charmonium states, $Z_{c}(3900) \Rightarrow$ charged state, $I=1$!!!!!!!!

SUSY-LFHQCD \rightarrow linear Regge trajectories for mesons, baryons, tetraquarks

Predictions

$\mathrm{R}_{\lambda}{ }^{\top}$: constituent into cluster $(2) \rightarrow$ pentaquarks are molecular states
all JPC $=0^{++}, 1^{++}, 1^{-+}$states \rightarrow tetraquark states

$\left.\begin{array}{l}Q \\ \vdots \\ \dot{Q}\end{array}\right) \rightarrow \begin{gathered}Q q \\ \square \\ \dot{Q}\end{gathered}$
\rightarrow no baryonic bound states with 3 heavy quarks

SUSY in superconformal QM \rightarrow symmetry properties of hadrons, not to quantum fields no need to introduce new supersymmetric fields or particles such as squarks or gluinos

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$
$e^{\phi(z)}=e^{+\kappa^{2} z^{2}}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \text { or } g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any $p Q C D$ scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$

Process-independent strong running coupling
$m_{\rho}=\sqrt{2} \kappa$ $m_{p}=2 \kappa$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan:

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

- Fubini, Rabinovici

Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame
- Quantization at Fixed Light-Front Time τ
- Causality: Information within causal horizon
- Light-Front Holography: $\mathrm{AdS}_{5}=\operatorname{LF}(3+I)$

- Single fundamental hadronic mass scale \mathbf{K} : but retains the Conformal Invariance of the Action (dAFF)!
- Unique color-confining LF Potential! $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

The Galileo Galilei Institute for Theoretical Physics

Supersymmetric Features of Hadron Physics from Light-Front Holography and Superconformal Algebra

Stan Brodsky

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Pion Form Factor from AdS/QCD and Light-Front Holography

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

$$
\begin{gathered}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{gathered}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

SUSY-LFHQCD \rightarrow linear Regge trajectories for

 mesons, baryons, tetraquarks

Features of LF Holographic QCD

- Color Confinement, Analytic form of confinement potential
- Massless pion bound state in chiral limit
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincare Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Analytic First Approximation to QCD
- Systematically improvable BLFQ

> Supersymmetric Features of Hadron Physics from Light-Front Holography and Superconformal Algebra

Stan Brodsky

Invariance Principles of Quantum Field Theory

- Polncarè Invariance: Physical predictions must be independent of the observer's Lorentz frame: Front Form
- Causality: Information within causal horizon: Front Form
- Gauge Invariance: Physical predictions of gauge theories must be independent of the choice of gauge
- Scheme-Independence: Physical predictions of renormalizable theories must be independent of the choice of the renormalization scheme Principle of Maximum Conformality (PMC)
- Mass-Scale Invariance:

Conformal Invariance of the Action (DAFF)

The Galileo Galilei Institute for Theoretical Physics

Supersymmetric Features of Hadron Physics from Light-Front Holography and Superconformal Algebra

Stan Brodsky

Supersymmetric Features of Hadron Physics and other Novel Features of QCD

 from Light-Front Holography and Superconformal Quantum Mechanics

Bound States in Strongly Coupled Systems March 12, 2018
with Guy de Tèramond, Hans Günter Dosch, C. Lorcè, M. Nielsen, K. Chiu, R. S. Sufian, A. Deur

